Making Connections

 $100(0.87)^{1/2}$

Coffee, Tea, and Hot Chocolate contain caffeine.

The expression $100(0.87)^{1/2}$

represents the percent of caffeine left in your body 1/2 hour after you drink a caffeine beverage

How can you estimate the value of $0.87^{1/2}$

Let's Take a Gloser Look!!

Fill in the chart. (You can use your calculator!!)

x	$x^{\frac{1}{2}}$		x	$x^{\frac{1}{3}}$
1	$1^{\frac{1}{2}} = 1$		1	1= 1
4	$4^{\frac{1}{2}} = 2$		8	$8\frac{1}{3} = 2$
9	9늘= 3		27	af=3
16	167=4		64	643=4
25	25t= 5		125	1303= S
	1 4 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 $1^{\frac{1}{2}} = 1$ 4 $4^{\frac{1}{2}} = 2$ 8 9 $4^{\frac{1}{2}} = 3$ 16 $16^{\frac{1}{2}} = 4$ 64

What do you notice?

To multiply powers with the same base you add.

$$a^m \times a^n = a^{m+n}$$

Examples:

1.
$$5^3 \times 5^2 = 5^5$$

$$2. 8^5 \times 8^2 = 8^7$$

2.
$$8^5 \times 8^2 = 8^7$$

3. $4^4 \times 4^2 = 4^6$

$$5^{1/2} \times 5^{1/2} = 5$$

1/2 + 1/2 = 2/2 = 1

This can also be written like:

$$\sqrt{5} \times \sqrt{5} = \sqrt{25}$$

$$= 5$$

$$2^{1/3} \times 2^{1/3} \times 2^{1/3} = 2$$

This can also be written like:

$$\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = \sqrt[3]{8}$$
= 2

Our Conclusion

- Raising a number to an exponent of 1/2 is equivalent to taking the square root!
- Raising a number to an exponent of 1/3 is equivalent to taking the cube root!

$$\mathbf{x}^{1/\mathbf{n}} = \sqrt[\mathbf{n}]{\mathbf{x}}$$

Practice Questions

Calculate each of the following without using a calculator:

Calculate each of the following without using a calculator:

$$36^{0.5}$$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.5}$
 $32^{0.2}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25}$
 $36^{0.25$

Calculate each of the following without using a calculator:

Therefore:
$$\mathbf{x}^{\mathbf{m/n}} = (\sqrt[n]{\mathbf{x}})^{\mathbf{m}}$$