

Step 1.

Find the x-intercept. (y=0)

$$5x - 0 = 15$$

$$\frac{5x}{5} = \frac{15}{5}$$

Graph the inequality. 5x - 3y < 15Step 1.

Find the x-intercept. (y=0)

$$5x - 3y = 15$$

 $5x - 3(0) = 15$
 $5x - 0 = 15$
 $5x = 15$
 $\frac{5x}{5} = \frac{15}{5}$
 $x = 3$
 $x-int = (3,0)$

Graph the inequality. 5x - 3y < 15Step 2.

Find the y-intercept. 5x - 3y = 15 (x=0) 5(0) - 3y = 15

$$0-3y=15$$

$$-3y=15$$

$$-3=-5$$

$$y=-5$$

$$(0-5)$$

Graph the inequality. 5x - 3y < 15Step 2.

Find the y-intercept. (x=0)

$$5x - 3y = 15$$

 $5(0) - 3y = 15$
 $0 - 3y = 15$
 $-3y = -5$
 $-3y = -5$
 $-3y = -5$

Step 3.

Plot the intercepts.

- x-int = (3,0)
- y-int = (0,-5)

Step 3.

Plot the intercepts.

$$x-int = (3,0)$$

$$y-int = (0,-5)$$

Step 4.

Determine if the line
will be solid

or dashed (dotted).

Step 5

Determine where

to shade the graph..

Use the co-ordinate (0,0).

(x,y)

Verify
$$(0,0)$$

 $5x - 3y < 15$
 $5(0) - 3(0) < 15$

0 4 15

Step 5.

Determine where

to shade the graph. -

Use the co-ordinate (0,0).

Verify
$$(0,0)$$

 $5x - 3y < 15$
 $5(0) - 3(0) < 15$

$$0 - 0 < 15$$

the line.

If it was false, you would shade on the opposite side of the line with (0,0).

$$a \times -46) = -16$$

$$\frac{9}{9X} = \frac{9}{16}$$

(-8,0)

(0,0)

$$3x-4y \geq -16$$

TRUE -> Shade to side where (0,0) lies

Shade on the same side as (0,0)

Check out the sheet. :)