The Mole

Calculating quantities

Learning Target

MMLT: Apply Avogadro's number in calculations of representative particles. This includes molar mass, volume of a gas at STP and percent composition calculations.

Be able to define, explain, identify or provide examples of each of the following:

- Mole
- Avogadro's Number
- Representative Particle

- Molar Mass
- STP
- Molar Volume

- Density
- Percent Composition
- Empirical Formula

Textbook Practice

- Page 291 #s 3, 4
- Page 292 # 5, 6
- Page 296 #s 7, 8, 13 15
- Page 298 #s 16 19

- Page 301 303 #s 20 23, 26 31
- Page 306 307 #s 32 35
- Page 310, 312 #s 36, 37, 43 46
- Page 315 #s 49 54, 58 69, 75, 79, 81, 82

The Mole

- A mole is defined as 6.022 x 10²³ representative particles.
 - Much like a dozen is 12, a mole is a very high number of particles because the particles are extremely small.
 - A representative particle is the smallest part of a compound. It can be atoms, molecules or formula units.
- 6.022 x 10²³ is called **Avogadro's Number** (in honour of the Italian researcher Amedeo Avogadro di Quaregna)
- Defined as the number of atoms in exactly 12 grams of carbon-12)

The Mole Math

 1 mole = 6.022 x 10²³ particles, to use it in calculations it is written as a ratio:

When converting to moles:

1 mol

 $6.022 \times 10^{23} \ particles$

When converting to number of particles:

 $\frac{6.022 \times 10^{23} \text{ particles}}{1 \text{ mol}}$

The Mole Math

- How many moles is 7.31×10^{24} atoms of potassium?
- How many atoms is 8.55 mol of platinum?
- How many molecules of CO₂ are in 4.56 mol of CO₂?
- How many atoms of oxygen in 4.56 mol of CO₂?
- How many moles is 7.78 x 10²⁴ formula units of MgCl₂?
- How many atoms of hydrogen in 1.23 mol of $C_6H_{12}O_6$?

Molar Mass

- The average atomic mass of an element is also the mass in grams of 1 mole of that element, called the *molar mass*.
 - Both have the same reference quantity, carbon-12.
- •1 mole of H has a mass of 1.008 grams.
- •1 mole of Fe has a mass of 55.85 grams.
- We can count representative particles in a compound by measuring its mass.

Molar Mass Math

- •Calculate the mass of 2.34 moles of carbon.
- •How many moles of magnesium is 63.29 grams of Mg?
- •How many atoms is 4.77 g of Li?
- •Calculate the mass of 9.45 x 10²² atoms of U.

Molar Mass of Compounds

- To determine the molar mass of a compound, add up the molar mass of *each atom* in the compound.
- For example, MgCO₃

24.3050 g + 12.0107 g + 3 x (15.999 g) = 84.3139 g

Moles-to-Mass & Mass-to-Moles

- •The molar mass of a compound acts as a conversion factor.
 - 1 mol MgCO₃ = 84.31 g MgCO₃ or 84.31 g/mol
- •Calculate the mass of 4.31 mol of MgCO₃.

More Molar Mass Math

- •How many moles is 285.45 g of PO_3 ?
- •Calculate the number of molecules in 285.45 g of PO_3 .
- Calculate the number of oxygen atoms in 285.45 g of PO_3 .

Practice

Page 296 #s 7, 8, 13 – 15 Page 298 #s 16 – 19

Mole-Volume Relationship for Gases

- It is difficult to directly measure the mass of a gas, with it being a gas and all.
- For a gas, its volume relates to how many particles are contained within.
- Two factors influence the volume of a gas: *Temperature* and *Pressure*.
- To count particles, we need a reference volume with all gases at the same temperature and pressure.

STP

- •The reference temperature and pressure is 0°C and 1 atm (atmosphere) of pressure.
- •This is referred to as Standard Temperature and Pressure, or **STP**.
- •At STP, 1 mole of any gas occupies a volume of 22.4 L. Called the *molar volume*.
- •1 mole = 22.4 L (for gases only)

Molar Volume Calculations

- •Calculate the volume of 4.59 mol of CO₂ gas at STP.
- Calculate the amount of moles of 14.8 L of O_2 at STP.
- Calculate the volume of 9.75 g of methane, CH₄ at STP.

Density of a Gas

- Density for a substance is mass per unit volume (D = m/V), usually measured in g/L for gases.
- At STP all gases have a volume of 22.4 L.
- Use the molar mass to determine its density by assuming there is exactly 1 mole of the gas.
- Calculate the density of CO₂ at STP.
- Calculate the density of butane, C_4H_{10} at STP.

Percent Composition of a Compound

- •Assume you have exactly one mole.
- •Determine the mass of each of the elements in the compound and divide by the molar mass of the compound.
 - Multiply that answer by 100%.
- Calculate the percent composition of $Al_2(CO_3)_3$.

Practice Questions for Review

- Page 301 303 #s 20 23, 26 31
- Page 306 307 #s 32 35

Empirical Formulas

- An empirical formula is the lowest whole number ratio of atoms in a compound.
- A molecular formula is the true number of atoms of each element in the formula for a compound.
- For example, take benzene:
 - Molecular Formula: C₆H₆
 - Empirical Formula: CH
- It is possible for two different compounds to have the same empirical formula.
 - Acetylene: Molecular formula is C₂H₂, empirical is CH

Empirical Formulas

- Formula Units for ionic compounds are always empirical (it's the definition of a formula unit).
- A molecular compound can only have a different empirical formula if the number of all the atoms contain a common factor.

Molecular: H_2O $C_6H_{12}O_6$ $C_{12}H_{22}O_{11}$ (Correct formula) \downarrow \downarrow \downarrow Empirical: H_2O CH_2O $C_{12}H_{22}O_{11}$ (Lowest wholenumber ratio) \downarrow

Calculating Empirical Formulas

- •Because empirical formulas are the lowest ratio of atoms, they are also the lowest ratio of moles.
 - •C₃H₈O 3:8 carbon-hydrogen, 8:1 Hydrogen-Oxygen
- Step 1: Assume you have a 100g sample, then all of the % compositions can be written as a mass in grams.
- Step 2: Convert from grams to moles.
- Step 3: Find lowest whole number ratio by dividing each number of moles by the smallest value.

Calculating Empirical Formulas

- •Calculate the empirical formula of a compound composed of:
 - 38.67 % C, 16.22 % H, and 45.11 % N
- •Calculate the empirical formula of a compound composed of:
 - •43.64 % P and 56.36 % O
- Calculate the empirical formula for caffeine:

•49.48 % C, 5.15 % H, 28.87 % N and 16.49 % O

Unit Review

MMLT: Apply Avogadro's number in calculations of representative particles. This includes molar mass, volume of a gas at STP and percent composition calculations.

Be able to define, explain, identify or provide examples of each of the following:

- Mole
- Avogadro's Number
- Representative Particle

- Molar Mass
- STP
- Molar Volume

- Density
- Percent Composition
- Empirical Formula

Textbook Practice

- Page 291 #s 3, 4
- Page 292 # 5, 6
- Page 296 #s 7, 8, 13 15
- Page 298 #s 16 19

- Page 301 303 #s 20 23, 26 31
- Page 306 307 #s 32 35
- Page 310, 312 #s 36, 37, 43 46
- Page 315 #s 49 54, 58 69, 75, 79, 81, 82