INTRODUCTION TO CHEMISTRY

 \mathbb{O}

 \cap

Ó

0

Q

 \bigcap

 \bigcirc

 \bigcap

 \cap

WHAT IS CHEMISTRY?

 Chemistry is the study of the composition of "matter" – (matter is anything with mass and occupies space), its composition, properties, and the changes it undergoes.

• Has a definite affect on everyday life - taste of foods, grades of gasoline, etc.

• Living and nonliving things are made of matter.

 Chemistry is the study of the <u>composition</u>, <u>structure</u>, and <u>properties</u> of matter and the <u>changes</u> it undergoes – such as burning fuels.

 $\underbrace{C_2H_5OH + 3O_2}_{\text{Reactants}} \rightarrow \underbrace{2CO_2 + 3H_2O + \text{Energy}}_{\text{Products}}$

5 MAJOR AREAS OF CHEMISTRY

- 1) <u>Analytical Chemistry</u>- concerned with the composition of substances.
- 2) <u>Inorganic Chemistry</u>- primarily deals with substances without carbon
- 3) <u>Organic Chemistry</u>- essentially all substances containing carbon
- 4) <u>Biochemistry</u>- Chemistry of living things
- 5) <u>Physical Chemistry</u>- describes the behavior of chemicals (ex. stretching); involves lots of math!

• **Pure chemistry-** gathers knowledge for the sake of knowledge

Applied Chemistry- is using chemistry to attain certain goals, in fields like medicine, agriculture, and manufacturing – leads to an application
 * Aspirin (C₉H₈O₄) - to relieve pain

WHY STUDY CHEMISTRY?

- Everyone and everything around us involves chemistry explains our world
- What in the world isn't Chemistry?
- Helps you make choices; helps make you a better informed citizen
- A possible career for your future
- Used to attain a specific goal
- What did we describe as "pure" and "applied" chemistry?

UNIT 1: FROM STRUCTURES TO PROPERTIES CLASSIFICATION OF MATTER

Properties of Matter: Chapter 2, pages 38 – 52. The Periodic Table: Chapter 6.1 – 6.2, pages 154 - 169

UNIT 1: LEARNING TARGETS

CMLT1	Define and classify matter according to its composition, distinguish between chemical and physical
	properties.
	Define and classify matter as elements, compounds, heterogeneous mixtures and solutions. Use the periodic law to
CMLT2	identify and distinguish metals and non-metals, periods and groups, representative and transition elements, and
	families.

CMLT1: Define and classify matter according to its composition, distinguish between chemical and physical properties.

Be able to define, explain, identify or provide examples of the following:

• matter

physical property/change

extrinsic property

• chemical property/change

intrinsic property

Textbook:

Page 42 #s 1 – 8

Pages 58 – 60 #s 35 – 43, 57 - 64

CMLT2: Define and classify matter as elements, compounds, heterogeneous mixtures and solutions. Use the periodic law to identify and distinguish metals and non-metals, periods and groups, representative and transition elements, and families.

Be able to define, explain, identify or provide examples of the following:

- elements
- compounds
- heterogeneous mixture
- homogenous mixture
- periodic law

Textbook:

- Page 47 #s 11 17
- Page 52 #s 20 27
- Page 58 #s 44 52
- Page 160 #s 1 7
- Page 181 #s 24, 26 31

- metals/non-metals
- periods/groups
- representative/transition elements
- families of elements

CH. 2.1: PROPERTIES OF MATTER

• Matter is anything that: a) has mass, and b) takes up space

 Mass = a measure of the amount of "stuff" (or material) the object contains (don't confuse this with weight, a measure of the force of gravity)

• Volume = a measure of the space occupied by the object

DESCRIBING MATTER

- Properties used to describe matter can be classified as:
 - Extensive depends on the amount of matter in the sample
 - Mass, volume, calories are examples
 - 2) Intensive depends on the type of matter, not the amount present
 - Hardness, Density, Boiling Point

PROPERTIES ARE...

- <u>Physical Properties</u>- a property that can be observed and measured without changing the material's composition.
- Examples- color, hardness, m.p., b.p.
- <u>Chemical Properties</u>- a property that can only be observed by changing the composition of the material.
 Examples- ability to burn, decompose, ferment, react with, etc.

STATES OF MATTER

- Solid-matter that can not flow (definite shape) and has definite volume.
- 2) <u>Liquid</u>- definite volume but takes the shape of its container (flows).
- 3) Gas- a substance without definite volume or shape and can flow.
 - Vapor- a substance that is currently a gas, but normally is a liquid or solid at room temperature. (Which is correct: "water gas", or "water vapor"?)

STATES OF MATTER – SIMULATION

States of Matter

4TH STATE: PLASMA - FORMED AT HIGH TEMPERATURES; IONIZED PHASE OF MATTER AS FOUND IN THE SUN

PHYSICAL VS. CHEMICAL CHANGE Physical change will change the visible appearance, without changing the composition of the material. • Boil, melt, cut, bend, split, crack • Can be reversible, or irreversible Chemical change - a change where a new form of matter is formed. • Rust, burn, decompose, ferment UNIT 1 - CHAPTER 2

CMLT1

Define and classify matter according to its composition, distinguish between chemical and physical properties.

TEST REVIEW QUESTIONS

• Page 42 #s 1 – 8.

• Page 58 – 60 #s 35 – 43, 57 – 64.

CH. 2.2: MIXTURES

- Mixtures are a physical blend of at least two substances; have variable composition. They can be either:
- 1) <u>Heterogeneous</u> the mixture is not uniform in composition
 - Chocolate chip cookie, gravel, soil.
- 2) <u>Homogeneous</u> same composition throughout; called "<u>solutions</u>"
 - Kool-aid, air, salt water
- Every part keeps it's own properties.

- SOLUTIONS ARE HOMOGENEOUS MIXTURES
 Mixed molecule by molecule, thus too small to see the different parts.
- Can occur between any state of matter: gas in gas; liquid in gas; gas in liquid; solid in liquid; solid in solid (alloys), etc.
- Thus, based on the distribution of their components, mixtures are called <u>homogeneous</u> or <u>heterogeneous</u>.

PHASE

- The term "phase" is used to describe any part of a sample with uniform composition of properties.
- A homogeneous mixture consists of a <u>single</u> phase.
- A heterogeneous mixture consists of two or more phases.

SEPARATING MIXTURES

- Some can be separated easily by physical means: rocks and marbles, iron filings and sulfur (use magnet)
- Differences in physical properties can be used to separate mixtures.
- <u>Filtration</u> separates a solid from the liquid in a heterogeneous mixture (by size) Figure 2.7, page 46

SEPARATION OF A MIXTURE

REVIEW QUESTIONSPage 47 #s 11 - 17.

CH. 2.3 ELEMENTS AND COMPOUNDS **Substances** are either: a) elements, or b) compounds

SUBSTANCES: ELEMENT OR COMPOUND

- <u>Elements</u>- simplest kind of matter
 - cannot be broken down any simpler and still have properties of that element!
 - all <u>one</u> kind of atom.
- <u>Compounds</u> are substances that can be broken down <u>only</u> by chemical methods
 - when broken down, the pieces have completely different properties than the original compound.
 - made of <u>two or more</u> atoms, chemically combined (not just a physical blend!)

COMPOUND VS. MIXTURE								
Compound	Mixture							
Made of one kind of material	Made of more than one kind of material							
Made by a chemical change	Made by a physical change							
Definite composition	Variable composition							
COMPOSITION UNIT 1 - CHAPTER 2	composition							

ELEMENTS VS. COMPOUNDS

- <u>Compounds can</u> be broken down into simpler substances by chemical means, but <u>elements cannot</u>.
- A "chemical change" is a change that produces matter with a <u>different composition</u> than the original matter.
- $CH_3COOH + NaHCO_3 \rightarrow NaCH_3COO + CO_2 + H_2O$

• A change in which one or more substances are converted into different substances.

Heat and light are often evidence of a chemical change.

PROPERTIES OF COMPOUNDS
Quite different properties than their component elements.

• Due to a CHEMICAL CHANGE, the resulting compound has new and different properties:

Table sugar – carbon, hydrogen, oxygen

• Sodium chloride – sodium, chlorine

• Water – hydrogen, oxygen

CLASSIFICATION OF MATTER

UNIT 1 - CHAPTER 2

 $\|$

REVIEW QUESTIONSPage 52 #s 20 - 27.

SECTION 6.1 ORGANIZING THE ELEMENTS

- A few elements, such as gold and copper, have been known for thousands of years since ancient times.
- Yet, only about 13 had been identified by the year 1700.
- As more were discovered, chemists realized they needed a way to <u>organize</u> the elements.

ORGANIZING THE ELEMENTS

- Chemists used the properties of elements to sort them into groups.
- In 1829 J. W. Dobereiner arranged elements into <u>triads</u> groups of three elements with similar properties
 - One element in each triad had properties intermediate of the other two elements

MENDELEEV'S PERIODIC TABLE

- By the mid-1800s, about 70 elements were known to exist
- Dmitri <u>Mendeleev</u> a Russian chemist and teacher
- Arranged elements in order of increasing <u>atomic mass</u>
 Thus, the first "Periodic Table" (page 156)

In 1913, Henry <u>Moseley</u> – British physicist, arranged elements according to increasing <u>atomic number</u>
The arrangement used today.

Alkaline 1 earth metals												Noble gases 1 18						
22	1 H	2 2A	201										13 3A	14 4A	15 5A	16 6A	 17 7A	2 He
ſ	Ľω	4 Be											5 B	Оø	7 N	80	9 F	10 Ne
2	11 Na	12 Mg	3	4	5	6 -	7 Transi	8 tion m	9 Ietals	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
	19 19	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
2	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 VV	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	110 Uun	111 Uuu		53.					
*Lanthanides				nides	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
† Actinides				90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

UNIT 1 - CHAPTER 6.1 & 6.2

Alkali metals

THE PERIODIC LAW SAYS: •When elements are arranged in order of increasing atomic number, there is a periodic repetition of their physical and chemical properties. • Horizontal rows = <u>periods</u> • There are 7 periods • Vertical column = <u>group</u> (or family) • Similar physical & chemical prop. • Identified by number & letter (IA, IIA)

AREAS OF THE PERIODIC TABLE

- Three classes of elements are:
- 1) metals, 2) nonmetals, and 3) metalloids
 - 1) <u>Metals</u>: electrical conductors, have luster, ductile, malleable
 - 2) Nonmetals: generally brittle and non-lustrous, poor conductors of heat and electricity

AREAS OF THE PERIODIC TABLE

- Some nonmetals are gases (O, N, Cl); some are brittle solids (S); one is a fuming dark red liquid (Br)
- Notice the heavy, stair-step line?
- 3) <u>Metalloids</u>: border the line-2 sides
 - Properties are <u>intermediate</u> between metals and nonmetals

REVIEW QUESTIONS

• Page 160 #s 1 - 7.

SECTION 6.2 **CLASSIFYING THE ELEMENTS** The periodic table displays the <u>symbols</u> and names of the elements, along with information about the structure of their atoms: •Atomic number and atomic mass

PERIODIC TABLE IN THE BACK OF YOUR TEXTBOOK AND PAGE 162-163

GROUPS OF ELEMENTS - FAMILY NAMES

- Group IA <u>alkali metals</u>
 - Forms a "base" (or alkali) when <u>reacting</u> with water (not just dissolved!)
- Group 2A <u>alkaline earth metals</u>
 - Also form bases with water; do not dissolve well, hence "earth metals"
- Group 7A <u>halogens</u>
 Means "salt-forming"

ELECTRON CONFIGURATIONS IN GROUPS Elements can be sorted into 4 different groupings based on their electron configurations: 1) Noble gases 2) Representative elements 3) Transition metals 4) Inner transition metals UNIT 1 - CHAPTER 6.1 & 6.2

CMLT2 Define and classify matter as elements, compounds, heterogeneous mixtures and solutions. Use the periodic law to identify and distinguish metals and non-metals, periods and groups, representative and transition elements, and families.

CMLT2 TEST REVIEW

Pages 58 – 60 #s 44 – 52. Page 181 #s 24, 26 – 31.

