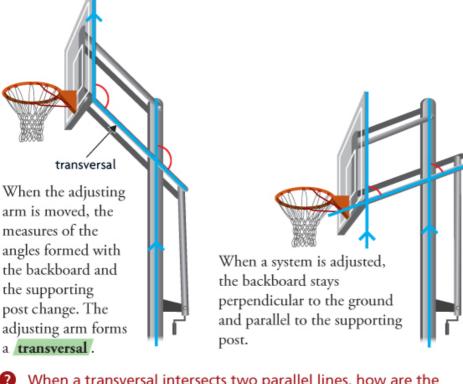
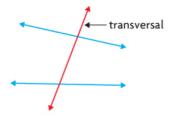
2.1

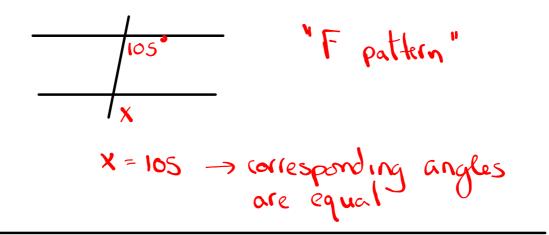

Exploring Parallel Lines

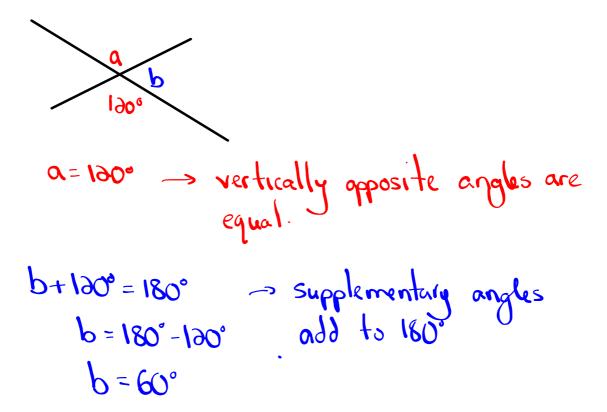
GOAL

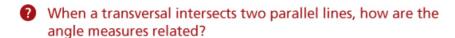
Identify relationships among the measures of angles formed by intersecting lines.

EXPLORE the Math

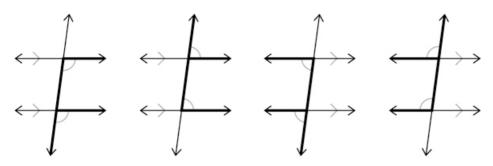

A sports equipment manufacturer builds portable basketball systems, like those shown here. These systems can be adjusted to different heights.

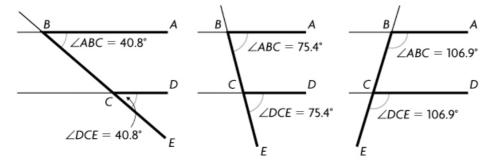



When a transversal intersects two parallel lines, how are the angle measures related?

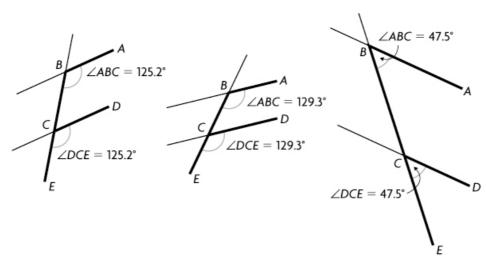

transversal

A line that intersects two or more other lines at distinct points.

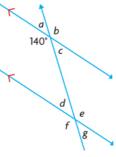



Sample solution

I measured the angle formed by the backboard and the lower adjusting arm. I also measured the angle facing the same direction, formed by the lower adjusting arm and the post. In the first diagram, these angles both measured 132°. In the second diagram, they both measured 70°.

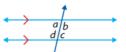

I imagined these angles as forming an F. I conjectured that any angles determined by two parallel lines and a transversal that formed an F would be equal. I drew a sketch of what these angles would look like.

I constructed parallel line segments *AB* and *CD* and a transversal using dynamic geometry software. I measured one set of angles that formed an F. Then I moved the transversal to form several different sets of angles and measured the angles. I noticed that no matter how I angled the transversal, the F angles were always equal.



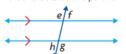
Next, I changed the angle of the parallel line segments and the distance between the parallel line segments. The F angles were still equal.

Reflecting


A. Use the relationships you observed to predict the measures of as many of the angles *a* to *g* in this diagram as you can. Explain each of your predictions.

- **B.** Jonathan made the following conjecture: "When a transversal intersects two parallel lines, the **corresponding angles** are always equal." Do you agree or disagree? Explain, using examples.
- C. Did you discover any counterexamples for Jonathan's conjecture? What does this imply?
- D. Sarah says that the converse of Jonathan's conjecture is also true: "When a transversal intersects two lines and creates corresponding angles that are equal, the two lines are parallel." Do you agree or disagree? Explain.
- **E.** Do your conjectures about angle measures hold when a transversal intersects a pair of non-parallel lines? Use diagrams to justify your decision.

interior angles


Any angles formed by a transversal and two parallel lines that lie inside the parallel lines.

a, b, c, and d are interior angles.

exterior angles

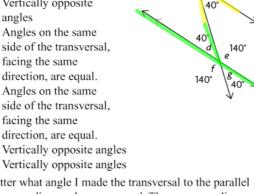
Any angles formed by a transversal and two parallel lines that lie outside the parallel lines.

e, f, g, and h are exterior angles.

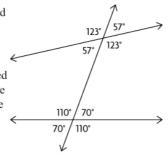
corresponding angles

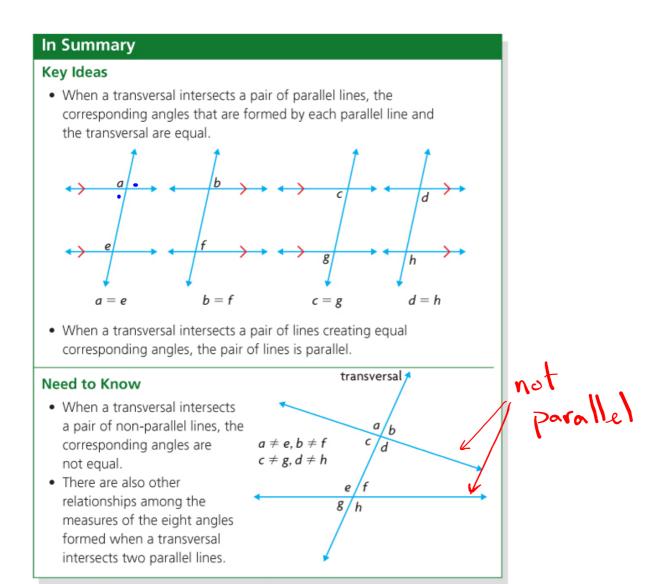
One interior angle and one exterior angle that are non-adjacent and on the same side of a transversal.

converse


A statement that is formed by switching the premise and the conclusion of another statement.

Answers


A. Explanation:

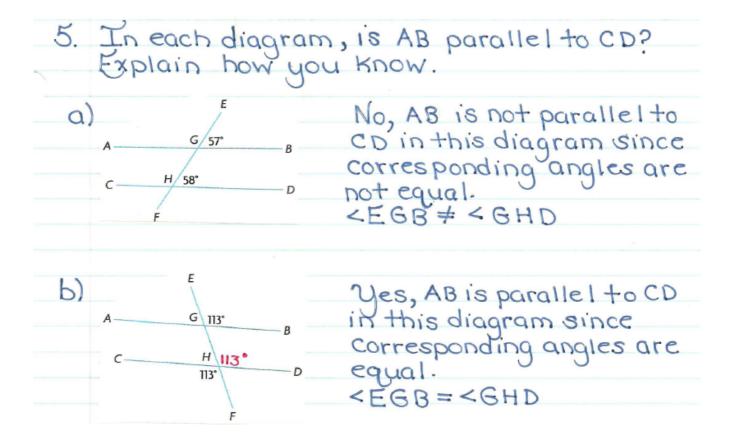

 $\angle g = 40^{\circ}$

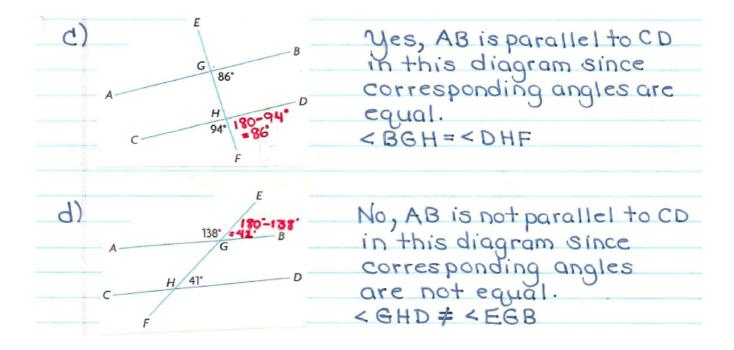
$\angle a = 40^{\circ}$	Supplementary angles:
	180° − 140°
$∠b = 140^{\circ}$	Vertically opposite
	angles
$\angle c = 40^{\circ}$	Vertically opposite
	angles
$\angle d = \angle a = 40^{\circ}$	Angles on the same
	side of the transversal,
	facing the same
	direction, are equal.
$\angle e = \angle b = 140^{\circ}$	Angles on the same
	side of the transversal,
	facing the same
	direction, are equal.
$\angle f = 140^{\circ}$	Vertically opposite angles

- **B.** Yes, I agree. No matter what angle I made the transversal to the parallel lines I drew, the corresponding angles were equal. The corresponding angles in the diagram above are equal.
- C. No, I didn't. This implies that Jonathan's conjecture about corresponding angles being equal is probably valid for parallel lines, no matter where the transversal is.
- D. I agree. If I draw a first line, which will be the transversal, and then draw a second line intersecting the first, and then draw a third line also intersecting the transversal at the same angle as the second line, the second and third lines will be parallel.
- E. No, they don't. I drew a set of nonparallel lines and a transversal, and I measured the angles. The angles formed by the first line and the transversal were different from the angles formed by the second line and the transversal.

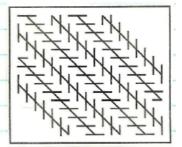
Assignment: pgs. 72 Ques. 2, 3, 5, 6

*For #2-list <u>only</u> corresponing and vertically opposite angles


^	SOLUTIONS => 2.1 Exploring Parallel Lines
2	Which pairs of angles are equal in this diagram? Is there a relationship between the measures of the pairs of angles that are not equal?
	Solution
	Corresponding Angles Vertically Opposite Angles
*	<egb=<ghd <agh="<CHF" <bgh="<DHF" <chf="<GHD" <ega="<GHC" <ghc="<DHF" all="" angles="" are="" can="" equal="" far="" of="" out="" pairs="" pick="" so="" that="" the="" these="" we=""> there are more!</egb=<ghd>
**	There definitely is a relationship between the measures of the pairs of angles that are not equal => they are supplementary.


3. Explain how you could construct parallel lines using only a protractor and a ruler.

SOLUTION


First, you could draw a line and then draw a transversal passing through that line. Next, you could use your practor to create an equal corresponding angle on the same side of the transversal.

[astly, you could use that angle to draw a line parallel to the first one.

6. Nancy claims that the diagonal lines in the diagram to the left are not parallel. Do you agree or disagree? Justify your decision.

SOLUTION

I disagree with Nancy's claims since the lines are all 5mm from each other. It is an optical illusion

PM11-2s1.gsp