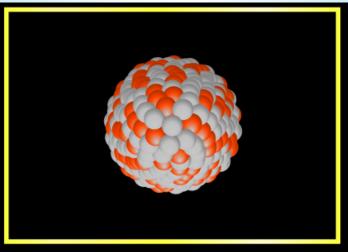
UNIT 1

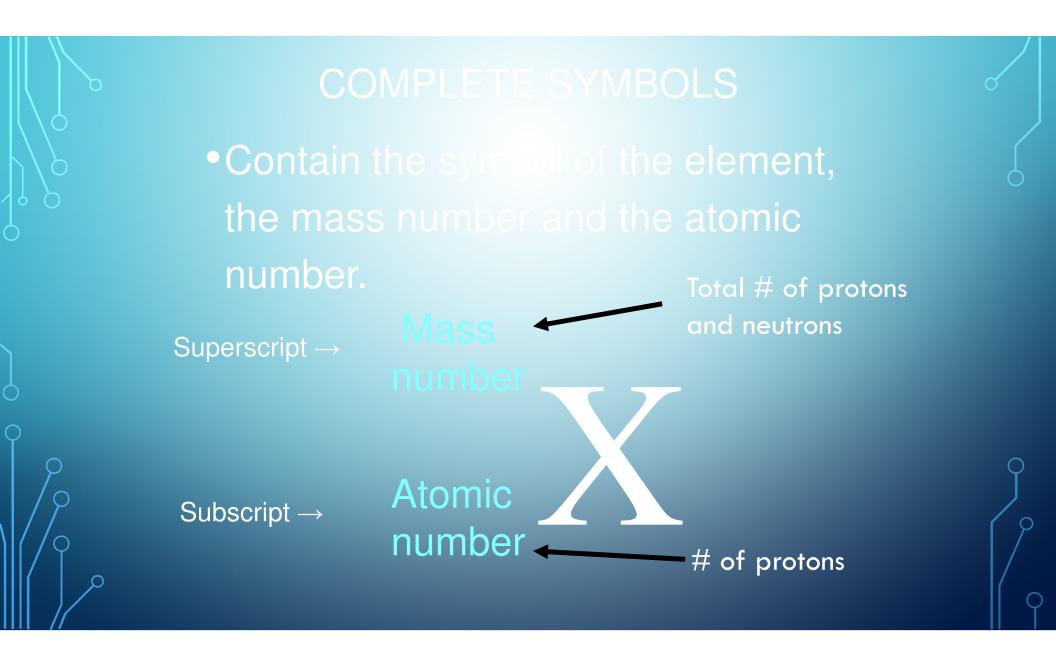

 \bigcirc

 \bigcirc

0 Q UNDERLYING STRUCTURE OF MATTER

• THE ATOMIC NUCLEUS wtror Electron Atom

Rutherford Atom



PRACTICE QUESTIONS

• Page 108 #s 8 - 14

SUBATOMIC PARTICLES

Particle			Location
Electron (e ⁻)		9.11 x 10 ⁻²⁸	Electron cloud
Proton (p+)	+1	1.67 x 10 ⁻²⁴	Nucleus
Neutron (nº)	0	1.67 x 10 ⁻²⁴	Nucleus

Information from Symbols Find each of these: a) number of protons b) number of neutrons c) number of electrons d) Atomic number e) Mass Number

ISOTOPES

- Atoms that have the same number of protons, but a different number of neutrons. i.e. the same atomic number but different mass numbers.
- We can also put the mass number after the name of the element:
 - carbon-12
 - carbon-14
 - [•] uranium-235

ATOMIC MASS

How heavy is an atom of ongen?

- It depends, because there are different kinds of oxygen atoms.
- We are more concerned with the <u>average</u> <u>atomic mass.</u>

This is based on the abundance (percentage) of each variety of that element in nature.
We don't use grams for this mass because the numbers would be too small.

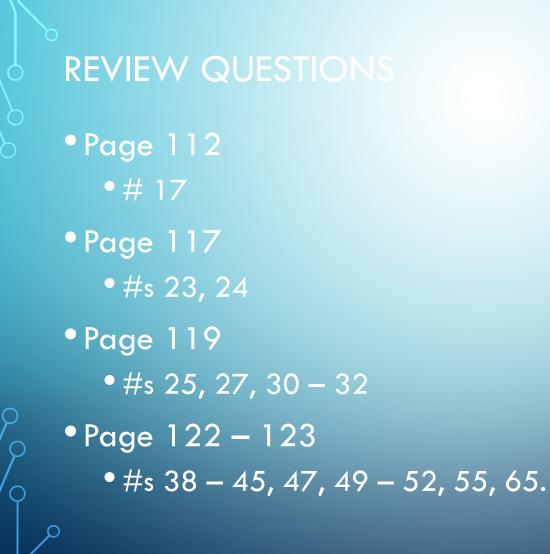
MEASURING ATOMIC MASS Instead of grams, the unit we use is the Atomic Mass Unit (amu) It is defined as one-twelfth the mass of a carbon-12 atom. • Each isotope has its own atomic mass, thus we determine the average from percent abundance.

ATOMIC MASSES

Atomic mass is the average of all the naturally occurring isotopes of that element.

Carbon-13 ¹³		6 neutrons	98.89%
	³ C	6 protons 7 neutrons	1.11%
Carbon-14	⁴ C	6 protons 8 neutrons	<0.01%

Carbon = 12.011


CALCULATING ATOMIC MASS

The two most abundant isotopes of carbon are carbon-12 (mass 12.00 amu) and carbon-13 (mass 13.00 amu). Their relative abundances are 98.9% and 1.10%, respectively. Calculate the atomic mass of carbon.

ANOTHER EXAMPLE

• Using the information below, calculate the approximate atomic mass of silicon.

28	²⁹ Ci		$^{31}_{14}$ Si
14S1	14	1401	14 N
92.2%	4.7%	3.1%	trace

