Develop the definition of a derivative

The concept of **Derivative** is at the core of Calculus and modern mathematics. The definition of the derivative can be approached in two different ways. One is geometrical (as a slope of a curve) and the other one is physical (as a rate of change). Historically there was (and maybe still is) a fight between mathematicians which of the two illustrates the concept of the derivative best and which one is more useful. We will not

dwell on this. Our emphasis will be on the use of the derivative as a

Definition. Let y = f(x) be a function. The derivative of f is the function whose value at x is the limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

provided this limit exists

If this limit exists for each x in an open interval I, then we say that f is differentiable on I.

S(x) = y = functions horght

when you plug x-values into

the f(x) furnula you are

Solving for the height

Solving for the height

Solving for the height

Solving for the height

Solving for a slope (m)

https://www.youtube.com/watch?v=N2PpRnFqnqY

https://www.youtube.com/watch?v=ynxQukKwl-Y

Notation:

$$f'(x) \Leftrightarrow \frac{dy}{dx}$$

$$f''(x) \Leftrightarrow \frac{d^2y}{dx^2}$$

Examples:

Use the definition of a derivative to differentiate...

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$0 \text{ find } f(x+h)$$

$$0 \text{ Fill in year formula}$$

$$0 \text{ Solve}$$

$$f(x) = 4x^2 - 4$$

$$0 \text{ } f(x+h) = 4(x+h) - 4$$

$$= 4(x+h) + 4(x+h) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 + xh + xh + h^2) - 4$$

$$= 4(x^2 +$$

$$f(x) = \lim_{h \to 0} \frac{8xh + 4h^{\theta}}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{4h(2x+h)}{h} = 4(2x+0) = 8x$$

$$f(x) = 4x^{3} - 4$$
Suppose i
$$f(5) = 4(5)^{3} - 4 \qquad f(-1) = 4(-1)^{3} - 4$$

$$= 4(35) - 4 \qquad = 4(1) - 4$$

$$= 100 - 4 \qquad = 0$$

Examples:

Use the definition of a derivative to differentiate... f (α)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = 2x^2 - 6x + 1$$

 $= \frac{3x_3 + 4x + 4y_3 - 6x - 6y + 1}{5(x_3 + 9x + 4y_3) - 6x - 6y + 1}$ $= \frac{9(x_3 + 9x + 4y_3) - 6x - 6y + 1}{5(x_4 + y_3) - 6(x_4 + y_3) + 1}$

$$f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - 6x - 6h + 1 - (2x^2 - 6x + 1)}{h}$$

$$f(x) = \lim_{h \to 0} \frac{K(4x + 3h - 6)}{K} = [4x - 6]$$

Examples:

Use the definition of a derivative to differentiate...

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\text{(a) tind } f(x+h)$$

$$\text{(a) till in your formula}$$

- O Find fout)
- 3 solve

$$f(x) = \boxed{\frac{x+1}{3x-2}}$$

$$f(x_{1}h) = \frac{(x_{1}h)_{1}}{3(x_{1}h)_{2}} = \frac{x_{1}h_{1}}{3x_{1}h_{2}}$$

$$f'(x) = \lim_{h \to 0} \frac{(3x-3)(x+h+1) - (x+1)(3x+3h-3)}{h(3x-3)(3x+3h-3)}$$

$$f'(x) = \lim_{h \to 0} \frac{3x^3 + 3xh + 3x - 2x - 2h - 2 - (3x^2 + 3xh - 2x + 3x + 3h - 2)}{h(3x - 2)(3x + 3h - 2)}$$

$$\int_{-5}^{1}(x) = \lim_{h \to 0} \frac{-5h}{h(3x-3)(3x+3)h-3} = \frac{-5}{(3x-3)(3x-3)} = \frac{-5}{(3x-3)(3x-3)} = \frac{-5}{(3x-3)(3x-3)}$$

Find the derivative of each function.

1.
$$f(x) = 8x^2 - 10$$

 $f'(x) = 16x$

2.
$$f(x) = 2x^2 + 14x - 7$$

 $f'(x) = 4x + 14$

3.
$$f(x) = x^3$$

$$5'(x) = 3x^3$$

$$5'(x) = 3x^{3}$$
4. $f(x) = \frac{x+4}{2x+3}$

Remember!

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$