March 20,2019

!!!!Reminder Test Tuesday on Chp 10!!!

Warm-Up

Calculate the distance and acceleration for the

$$d = \frac{vt}{2} \\ = (20)(5)/2 \\ = 50km$$

$$a = v_{\underline{t}} - v_{\underline{i}}$$
 $t_2 - t_1$
 $= 20 \text{km/h} - 0 \text{km/h}$
 $5 \text{h} - 0 \text{h}$

Answers pg 393 #4b,5b,6c

4b) the area under the graph of a speed time graph communicates the distance travelled.

5b) Distance (Cathryn) =
$$\underline{\text{vt}}$$
 = $\underline{\text{(6m/s)(100s)}}$ = 300m
2

Distance (Keir) =
$$vt$$
 = $(4m/s)(100s)$ = 200m
2

6c) Distance (Cheetah) =
$$\underline{vt}$$
 = $\underline{(20m/s)(2s)}$ = 20m
2

Example:

Bicycle Trip

Calculate the total distance travelled by the bicycle.

$$D_1 = 1/2 \text{ vt}$$
 $D_2 = \text{vt}$ $D_3 = 1/2 \text{vt}$
= $1/2 (15)(10)$ = $(15)(20)$ = $1/2 (10)(10)$
= 75m = 300m = 50m

$$D_4 = 1/2 \text{ vt}$$

= 1/2 (25)(20) $D_{\text{total}} = 75 + 300 + 50 + 250$
= 250m = 675m

Review Finding Distance/Acceleration

If shape is a square (acceleration zero) use:
D = v x t

If shape is a triangle (speed increasing or decreasing) use:

$$D = \underline{v \times t}$$

If finding the acceleration find the slope of the line by using the formula

$$a = \underline{v_f} - \underline{v_i}$$
$$t_2 - t_1$$

Complete Graphing Acceleration and Calculating Distance WS