THE ELECTROMAGNETIC SPECTRUM

PHYSICS 112: LIGHT UNIT LEARNING TARGET 2 (LLT2)

MORE THAN COLORS

- Radio
- > Micro
- **>**Infrared
- Visible
- > Ultraviolet
- >X-ray
- >Gamma ray

WHITE LIGHT AND COLORS

- Why is something blue?
 - That object absorbs all the colors and reflects blue.
 - Our eyes only see objects because they emit or reflect light.
- Why is something black? White?
 - Absorbs all the colors
 - Reflects all the colors

THE ELECTROMAGNETIC SPECTRUM

- They are a moving electric and magnetic field.
 - Related to moving or oscillating electrons.
 - We will use some of the properties of transverse waves to visualize EM Radiation.
- Light is a small part of the EM spectrum

> VISUALIZING EM RADIATION

DIFFERENCES FROM MECHANICAL WAVES

•EM Waves are produced by movement of electrons

THE FULL ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM RANGES AND APPLICATIONS

Classification	Range	Applications
radio waves	$\lambda > 30 \text{ cm}$ $f < 1.0 \times 10^9 \text{ Hz}$	AM and FM radio; television
microwaves	30 cm > λ > 1 mm 1.0 × 10 ⁹ Hz < f < 3.0 × 10 ¹¹ Hz	radar; atomic and molecular research; aircraft navigation; microwave ovens
infrared (IR) waves	1 mm > λ > 700 nm 3.0 × 10 ¹¹ Hz < f < 4.3 × 10 ¹⁴ Hz	molecular vibrational spectra; infrared photography; physical therapy
visible light	700 nm (red) > λ > 400 nm (violet) 4.3 × 10 ¹⁴ Hz < f < 7.5 × 10 ¹⁴ Hz	visible-light photography; optical microscopy; optical astronomy
ultraviolet (UV) light	400 nm > λ > 60 nm 7.5 × 10 ¹⁴ Hz < f < 5.0 × 10 ¹⁵ Hz	sterilization of medical instruments; identification of fluorescent minerals
X rays	60 nm > λ > 10 ⁻⁴ nm 5.0 × 10 ¹⁵ Hz < f < 3.0 × 10 ²¹ Hz	medical examination of bones, teeth, and vital organs; treatment for types of cancer
gamma rays	0.1 nm > λ > 10 ⁻⁵ nm 3.0 × 10 ¹⁸ Hz < f < 3.0 × 10 ²² Hz	examination of thick materials for structural flaws; treatment of types of cancer; food irradiation

RADIO WAVES

- Low Frequency, high wavelength, lowest energy EM waves.
- Radio Communication (radios, TVs, etc.)
- Radar/Sonar
- Radar Guns (to determine speed)
- Magnetic Resonance Imaging (MRI)
- Imaging the universe

