May 13, 2019

- 1) go over answers to HW questions
- 2) Balancing Equations

Quiz Friday on Balancing Equations!!

Warm-Up

Count the atoms in each of the following:

1) MgCl₂ 2 atoms of whiting
2) 2Li₂SO₄ 4 citous of lithium 2 citous
3) 3Sn NO₃ 5 atoms of oxygen
3 citous of tim
12 atoms of nitrogen
12 atoms of oxygen
12 atoms of oxygen
13 atoms of oxygen
13 atoms of oxygen

N_{α} CO	2 sodium	$Ca_3(PO_4)_2$	3 calcium
Na_2CO_3	1 carbonate		2 phosphate
Type of Atom	# of atoms	Type of Atom	# of atoms
Na (sodium)	2	Ca (calcium)	3
C (carbon)	1	P (phosphoro	ous) 2
O (oxygen)	3	O (oxygen)	8
K ₂ CrO ₄	,		
Type of Atom	# of atoms	3BaCl ₂	
K (potassium)	2	Type of Atom	# of atoms
Cr (chromium)	1	Ba (barium)	3
O (oxygen)	4	CI (chlorine)	6
$NH_4C_2H_3O_2$ 1	ammonium	4Al ₂ (CO ₃) ₃	8 aluminum
Type of Atom	# of atoms	Type of Atom # c	_{of atoms} 12 carbonate
N (nitrogen)	1	Al (aluminum) 8	- atomo
H (hydrogen)	7	C (carbon)	
O (oxygen)	2 1 lood	O (oxygen) 36	
$Pb(NO_3)_2$	2 1 lead	$2(NH_{4})_{2}Cr_{2}O_{7}$	4 ammonium
T (A)	2 nitrate		4 chromium
Type of Atom Pb (lead)	# of atoms	71	atoms 14 oxygen
N (nitrogen)	2	N (nitrogen) 4	——————————————————————————————————————
O (oxygen)	6	H (Hydrogen) 16	
O (Oxygon)		Cr (chromium) 4	
		O (oxygen) 14	

pg 233 #3

Number of atoms	Reactants	Products
carbon	1	1
oxygen	4	4
hydrogen	4	4

c) since atoms are neither created or destroyed in a chemical reaction, there can be no gain or loss of mass

Recall Law of Conservation of Mass

that matter is neither lost nor gained in chemical reactions; it simply changes form.

so when you look at a chemical reaction it must have the same number of atoms of each element in the reactants and in the products.

Example with Chemical Equations

(skeletal agn)

i.e.
$$H_2 + O_2 \Rightarrow H_2O$$
 is correctly written as $2H_2 + O_2 \Rightarrow 2H_2O$

We add coefficients (numbers in front of the formulas) to create more atoms and follow the law!!

You cannot change subscripts or rearrange chemical equations!!!

Tips for Balancing Chemical Reactions

• Create a chart to help Count the Atoms! and see what you need to balance.

i.e.
$$CH_4 + O_2 \Rightarrow$$

REACTANTS	PRODUCTS
1	1
<u> </u>	

 $CO_2 + H_2O$

 C
 1

 H
 4

 O
 2

 3

- You can only add coefficients (number in front of formula)
- Balance each atom individually, unless it appears to be a polyatomic compound (SO₄, CO₃, PO₄ etc)
- Start with elements that occur in only one compound on each side of the equation. (referred to as easy atoms)
- Balance oxygen as your last element if it appears in more than one compound on each side of the equation.

HW Complete Balancing Worksheet 6.5c