May 27,2019

go over answers pg 247 #4,5/ Reaction Worksheet more Chp 6 Review

Test Tomorrow on Chp 6 Chemical Reactions!!

Answers pg 247 #4,5

- 4. a) synthesis
 - b) single replacement
 - c) double replacement
 - d) decomposition
 - e) decomposition
 - f) single replacement
 - g) synthesis
- 5. a) barium + sulfur ⇒ barium sulfide

Ba + S
$$\Rightarrow$$
 Ba²⁺S²⁺
Ba + S \Rightarrow BaS (skeletal)

Ba + S \Rightarrow BaS (balanced)

- b) bromine + sodium iodide \Rightarrow iodine + sodium bromide $Br_2 + Na^{1+}I^{1-} \Rightarrow I_2 + Na^{1+}Br^{1-}$ $Br_2 + NaI \Rightarrow I_2 + NaBr$ (skeletal) $Br_2 + 2NaI \Rightarrow I_2 + 2NaBr$ (balanced)
- c) barium nitrate + sodium sulfide \Rightarrow barium sulfide + sodium nitrate Ba 2 NO_8^{1-} + $Na^{1+}S^{2-}$ \Rightarrow Ba $^2+S^{2-}$ + $Na^{1+}NO_3^{1-}$ Ba $(NO_3)_2$ + Na_2S \Rightarrow BaS + $NaNO_3$ (skeletal) Ba $(NO_3)_2$ + Na_2S \Rightarrow BaS + $2NaNO_3$ (balanced)
- d) lithium carbonate \Rightarrow carbon dioxide + lithium oxide $Li^{1+}CO_3 \Rightarrow CO_2 + Li^{1+}O^{2-}$ $Li_2CO_3 \Rightarrow CO_2 + Li_2O$ (skeletal and balanced)

```
e) lead (II) oxide \Rightarrow lead + oxygen

Pb^{2+}O^{2-} \Rightarrow Pb + O_2

PbO \Rightarrow Pb + O_2 (skeletal)

2PbO \Rightarrow 2Pb + O_2 (balanced)
```

f)calcium + water
$$\Rightarrow$$
 hydrogen + calcium hydroxide
Ca + H₂O \Rightarrow H₂ + Ca²⁺OH¹⁻
Ca + H₂O \Rightarrow H₂ + Ca(OH)₂ (skeletal)
Ca + 2 \Rightarrow H₂ + Ca(OH)₂ (balanced)

g) sulfur trioxide + water
$$\Rightarrow$$
 sulfuric acid $SO_3 + H_2O \Rightarrow H_2SO_4$ (skeletal and balanced)

Science 10 - Lesson 27 Answers to pg 247 and worksheet cont Chp 6 Review.noteby 217, 2019

- 1) $2 \text{ NaBr} + 1 \text{ Ca}(OH)_2 \rightarrow 1 \text{ CaBr}_2 + 2 \text{ NaOH}$
- 2) $2 \text{ NH}_3 + 1 \text{ H}_2 \text{SO}_4 \rightarrow 1 \text{ (NH}_4)_2 \text{SO}_4$
- 3) $4 C_5 H_9 O + 27 O_2 \rightarrow 20 CO_2 + 18 H_2 O$
- 4) $3 \text{ Pb} + 2 \text{ H}_3 \text{PO}_4 \rightarrow 3 \text{ H}_2 + 1 \text{ Pb}_3 (\text{PO}_4)_2$
- 5) $1 \text{ Li}_3\text{N} + 3 \text{ NH}_4\text{NO}_3 \rightarrow 3 \text{ LiNO}_3 + 1 (\text{NH}_4)_3\text{N}$
- 6) $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$
- 7) $\mathbf{2} \text{ KBr} + \mathbf{F}_2 \rightarrow \mathbf{2} \text{ KF} + \mathbf{Br}_2$
- 8) Na₃PO₄ + $\frac{3}{3}$ KOH $\Rightarrow \frac{3}{3}$ NaOH + K₃PO₄
- 9) $MgCl_2 + Li_2CO_3 \rightarrow MgCO_3 + 2 LiCl$
- 10) $CaCO_3 \rightarrow CaO + CO_2$
- 11) **2** $C_5H_5 + Fe \rightarrow Fe(C_5H_5)_2$
- 12) SeCl₆ + O₂ \rightarrow SeO₂ + $\frac{3}{2}$ Cl₂
- 13) $C_3H_6O + 4O_2 \rightarrow 3CO_2 + 3H_2O$
- 14) $2 \text{ NO}_2 \rightarrow 2 \text{ O}_2 + \text{N}_2$
- 15) $1 \text{ AlCl}_3 + 3 \text{ Cs} \rightarrow 3 \text{ CsCl} + 1 \text{ Al}$

- Type of reaction: double displacement
- Type of reaction: **synthesis**
- Type of reaction: **combustion**
- Type of reaction: single replacement
- Type of reaction: **double replacement**
- Type of reaction : **decomposition**
- Type of reaction: single replacement
- Type of reaction: double replacement
- Type of reaction: double replacement
- Type of reaction: **decomposition**
- Type of reaction: synthesis
- Type of reaction: single replacement
- Type of reaction: combustion
- Type of reaction: decomposition
- Type of reaction: Single Displacement

Types of Reactions

Synthesis (Building Up)
One product

Decomposition (Breaking Down)
One Reactant

Combustion (burning)

complete products are $CO_2 + H_2O$ incomplete products are $CO_2 + CO + C + H_2O$

Single Replacement element + compound as reactants and products

Double Replacement compound + compound as reactants and products

Remember these tips when balancing

- *Remember you can only add co-efficient's
- * Balance the easy atoms first (those that only appear once on each side of the equation)
- * Keep poly-atomics that stay together together.
- * Keep oxygen till the end
- * if there is an odd number of oxygen balance the other atoms 1st then put the odd number in front of the O₂ and double the remaining coefficients.
- * if you have an OH on one side and an H₂O on the other rewrite the H₂O as HOH.

Complete

Chp 6 Review WS/Types of Reaction Review WS

Practice, Practice these are the same types of questions that are on your test!!!!

Answers will be posted on the website make sure you check!!!

Also make sure you can identify reaction type, write skeletal equations and balance!!! (There is a question on the test like this worth a lot of marks!!!!)