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Warm Up
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Differential and Integral
Calculus 120

I Integration by Parts I

S(x)f§70 < g'(x\)g()o + g()\)ﬁ‘(vﬂ
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As we have discussed before, every differentiation
rule has a corresponding integration rule.

The rule that corresponds to the Product Rule for
differentiation is called the rule for integration by parts.

The product rule stated that if f and g are
differentiable functions, then

d
= [fx)g@)]= fx)g' () + g1 (®

In the notation for indefinite integrals this equation
b .ee ] ]
ecomes- [[f(og ()de+ g ()] =

or

[ Feorg et [ g f (ods 2 Fg(x)

which can be rearranged as:
[ 109 s = 1(xg () - [ g(x) /" (kx|

this formulas above is called

the I integration b
It is perhaps easier to remember in the following
notation..... Let | #= f(x)and v=g(x)

then the differentials are: du = f. (x)dx v = g'(x)dx

And by the Substitution Rule, the formulas becomes...
[ Fg' (o) = 1 (x)g(x) - [ g(x) 1 (x)ee

Integration By Parts
J@@ =uv— J.vdu

Let's do an example.... Find: | xsin xclx
N—~—

O
w v

It helps when you  we need to make an appropriate

stick to this paﬁern?home foruand dv ,

4
7

u=_y dv = Siax §x 7
- /7

/
7/

du = \ a:‘ v = -C0SX / -

Again, the goal in using 'in’regra’rion by parts is to
obtain a simpler integral than the one we started with...
so we must decide on what u and dv are very carefully!

In general, when deciding on a choice for u and dv, we
usually try to choose u = f(x) to be a function that
becomes simpler when differentiated...

(or at least NOT more complicated)
as long as dv = g'(x)dx can be readily integrated to give v.

SQM = (o) “[QIOSXAX

h = ~XCEX + &LOSXB’L

& - XCOSX + Slm
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\

Find: J-xexdx g dx
) Wi
Loy

It helps when you X

stick to this pattern:

u=_ X dv=rc dx
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Find: J' x 005(3 x)dx = X(%) Sm(3")> _%nﬁm dx

It helps when you
stick to this pattern: = Ixsindx -3) gSI n’bxa X

u=_ K dv= CosBRIX

du=_|dx W%m@ﬁ - éxsm’m-%){%) ©55x)
EL xsindx yLlosdx +(
3 1 —




Day 16 - Integration by Parts continued after.notebook

Find:
i I&Eﬁ = Xlnx - ga(|_ Ix
« N X
It helps when you
stick to this pattern: =X \“X‘ S |3x
u=\nx  dv=\9%
du=dx v= =l - s

f——’xmx
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Find: Jlxz sin( 3x)dx - Xa(;\(osgu>—8-,\.ﬁcs?>< I 0
g 3 S

N iy
w dv
It helps when you 2 %l
stick to this pattern: = ‘f\g" oS (S‘@)‘ ©33%d%
@ ) _ :

U= ¥ dv = S1ndx 0X b )
du=Axdx v=-\ = =\ X OSDON v ( XCesINAX
R e > 3\‘:;""3;‘/

D) W= X :C@dx = '%): ©0$dX + %[7( Jsindx ‘%‘“ﬂ}xé;

A “ - m V = ——l 2
X cos X + 9| | Xswdx _XS\Q%&‘

-\
S E —\etdX
>

- SR
= -V oo+ [ L xsidx -&lCo{.’»:l
d A\ A

=-1 X}CDSSX 4 qu S\fsx \-_)_.(OS?JX +C
3 q 2]

o ———

1 2 .
=——x*cos3x+—xsin3x+ —cos3x+C
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X €
—
(VN dv
It helps when you

stick to this pattern:

Ay = Xa dv = e“dx

= Xe @Q"\

- X ~JKRe \LBQ\L —kCJ

=x’e" =2xe" +2e" +C
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Find:
xz ln xdx
i L/w*

It helps when you
stick to this pattern:

U= lDX af’v=xa X
du= \3dx v= _\_XB
X R

|
| wl;w
w —
2
\
Y
7,
Q-
P

ki lJc:3 lnx—lx3+C
3 9
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Find:

N

. N X

I e sin xdx e (— (GS}A - S(‘C%)b( Ax
It helps when you N
stick to this pattern:

dv

% - X
U= g’( dv = SIKdX 3{ Smxéx = - (osX + Q"M
du= & I v=-(o5x w &

W= o dy= s SQXS"\XCN:—QXQ)SX-\- CXS']X’ 3|quxe

du-~ X V= ?“_ﬂ"

(¢ sindX= ~eask ¢ sini(

X \
9\5 stlm(éx ~ e sink —-< OSX

p) 2

Sﬁxsmxé = .l5<ex$\ﬂx —QXCosyg) + L

e*ahxéx

this one as a little twist, j P .

because you cannot get to a simpler integral = —£ (Sln X — G008 _X,') + C
- rearrange for double the initial integral and 2

divide by two!

12
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Find: J-ex cos xdx

It helps when you
stick to this pattern:

i = dv:

du= v=

this one as a little twist,

because you cannot get to a simpler integral
- rearrange for double the initial integral and
divide by two!

May 27, 2019
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Find: . ‘
) Iwﬁ = XS\nX—SX-L I

\ dv
It helps when you

stick to this pattern:

1

g = sin'x  Jp= 1dx
du=_1 Jdxv= X

45
S = X&n X 4L (Wu
e 53
-\ A \
may require substitution rule as well... - XS“\ X _\_LQB.“ + C
\ X) o
A V= -\
) = xs\n X+ W2 +C
a“: -y 9X =

‘—\5}\»\: X 9% g=xsin_1x+w.f1—x2+c !

14
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It helps when you
stick to this pattern:

3= ‘\\X dv=0x

du=\ dx v= X
X
E N vl
= Rlnx \Q“ gedx
= X\nx \i - X \0

\

= dee —Hlnl - (e,— \\
e -1O) - e 4+

= e~ e+

ND
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It helps when you
stick to this pattern:

) =\'\(7Cqsx)dv = M&

di =_ qny X V=—Cosx
(osx

F g

IESiHXIP_(_‘iES_x)@ = -(osx \\'\((osx\

0 p——

™ ?;e«(j_gw

A Y
= —COSX\Y\((QSQ\ _ ) 7 < 1NX d X
o 0

()

- - cosxln(es¥) r/s + QosX \1/3
s o
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Homework - Exercise 11.4 - pp. 515 -Q.1,2,4 (orvut | k\

’R.oca\\ ﬂ%ob on - pege Sl

©® o SJrcw\x N =S SX gy

Cosx
— ,‘_ oSlf\XAX
L\:COSZQ m
Ju= - sinx 0% —
" _ @Gﬁu
A= Sk X - S n
_ ~Sldu
\\
=-Inful «C
_ Anleal 4 €
= \n\<08£| + C
\J_ L C
CoSX

_i\/sqcx + C}
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Find: :
WARM UP I J'xz sin xclx

It helps when you
stick to this pattern:

U= dv =

du = V=

May 27, 2019
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Let's start of f by doing some integration of
trigonometric functions that require direct substitution and
practice using our identities:

Isin X COS xdx

Icosz xdx

O
-
[sin® xd C D
>
9

jcos3 xdx

xl2 3 .4
_[0 COS” xXSIn  xdx

21
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sin” xcos xdx

sin’ xcos” xdx

In the preceding examples, an odd power of sine or cosine enabled us to separate a single
factor and convert the remaining even power. If the integrand contains even powers of both sine
and cosine, this strategy fails. In this case, we can take advantage of the half-angle identities.

sin” xdx

sin” xcos” xdx

sin® xdx

may have to use the half-angle identity twice

Strategy for Evaluating | sin"x cos"x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and
cos’x = 1 — sin’x to express the remaining factors in terms of sine:

sin"x cos™* 'y dx = J sin™x (cos*x)* cos x dx
= ‘ sin™x (1 — sin®x)*cos x dx
Then substitute u = sin x.
(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use
. 3 i . .
sin’x = 1 — cos’x (o express the remaining factors in terms of cosine:

PO [ (e .
J sin®**'x cos"x dx = ' (sin’x)* cos™x sin x dx

= l (1 — cos’x)*cos"x sin x dx

Then substitute 4 = cos x. [Note that if the powers of both sine and cosi
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identiti
sin*x = (1 — cos 2x) cos®x = }(1 + cos 2x)
It is sometimes helpful to use the identity

. |
Sin X cos x = ;sin 2x

22
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Evaluate:

Itan6 xsec” xdx

7
_[tans xsec’ xdx

Strate

Strategy for Evaluating | tan™x sec”x dx

(a) If the power of secant is even (n = 2k), save a factor of sec’x and use
sec’x = | + tan’x to express the remaining factors in terms of tan x:

* tan™x secx dx = ' tan™x (sec’x)* ' secx dx

= [tan"'.r{l + tan®x)* ' sec’y dx

Then substitute ¥ = tan x.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x a1
use tan’x = sec’x — 1 to express the remaining factors in terms of sec x:

* tan®*'x sec"x dy = * (tan’x)* sec™ 'x sec x tan x dx

= ‘ (sec’x — 1)'sec" 'x sec x tan x dx

Then substitute 4 = sec x.

May 27, 2019
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We will also need to know the indefinite integrals of tan x (already found this
one) and sec x when integrating these types of functions.

Utan xdx = 1n|sec x| +C _[secxdx =In|sec x +tan x|+ C

" 1 m
I sec xdx =1In|secx + tanx| + C

duummmEmEm]

i EEEEENI
| tan x dx = In |sec x| + C

J.tan3 xdx -
Isec3 xdx -

here, we can use integration by parts and rearrange for
double the original integral.

Find:

24
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Exercises 7.2 [ page 482

Exercises 7.2 1) page 482
1. scos’x — jcos’x + C 3. —o
5. 5sin’x — jsin’x + gsin’x + C 7, w/4
9. §x+%sin2x+ﬁsin4x+c
11. (3x/2) + cos 2x — gsindx + C 13, (37 — 4)/192
15. [ cos’x — 3 cos x]cos x + €
17. jcos’ — In|cosx| + C  19. In(l + sinx) + C
2l. tanx —x+ C 23 tanx +jtan’x + C  25. %
27. jsec’x —secx + C 29, %
31. jsec'r — tan’x + In|secx| + C  33. Jtan’x + C
35. V3 — (w/3)
37. —}cot’w — scot’w + C 39. ln‘| csex — cotx| + C
41. ;[isin3x — jsin7x] + € 43. lsin20 + Lsin 120 + C
45. jsin2x + C
47. —cos’x + ;cos’x — cosx + C
1.1

-

e
/

L

May 27, 2019
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Trigonometric Substitution

This is an integration technique infroduced as a means
of evaluating integrals involving the radical forms:

2 2 2 2
a —x a +x x> —a°
For integrals involving: let then

x=asmn@ | Ja’*—x* =acosf

x=asecl|Vx*—a® =atan8

/a2 _x2
ﬂ/(;12_|_x2 x=atan@| Ja® +x* =asect
sz —a2

Just as with algebraic substitution, our objective
with trigonometric substitution is to eliminate the
radicals in the integrand. There are three substitutions
that accomplish this objective for the three types of
radicals outlined in the table above. X£da

To show that the radical is eliminated as indicated in
each of the three cases, we need to use the following

trigonometric identities: gin% @ + cos> @ = 1

1—-smn“ @ =cos”“ @ recall double angle identity

sin 26 =

2sinfcosf

1 + tan2 9 _ Sec2 9 also we will make use of the

Half-angle identities:

sec’@-1=tan> @ L. l-cos20
sin“ 8= -

cos’ 0

_ 1+cos20
2

We will always manipulate the radical first so that we

have the constant... a=1

It also helps to build a triangle marking angle theta.

May 27, 2019
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use the help of a triangle to define theta before substitution

Iﬁdx

J.\/4—x2dx

May 27, 2019
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use the help of a triangle to define theta before substitution

1
et

I 1 dx
x*1—x?

J‘ dx
x*V9—x°

May 27, 2019

30



Day 16 - Integration by Parts continued after.notebook

dx

1
I J9 — 49x>

I\/16+25x2dx

May 27, 2019
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1

dx
I\/16+36x2

May 27, 2019
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Use trigonometric substitution to find each of the following:

[V36-25xdx >

33
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Find the area enclosed by the ellipse: xz y)

sketch (find area in first quadrant from x = 0 to x =5)

y="?

May 27, 2019
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Exercises 7.3 [ page 488 4
LVx2=9/9)+C 3.ix*-18)Jx’+9+C
5. w24 + 3/8 —; 1. —J25 —xY(25x) + C
9. (1/V3)In|(Vx+3 - B)x| + C

11. ;sin"'2x) + 3x/1 — 4x2 + C

13. /Ox> — 4 — 2sec'(3x/2) + C |
15. (x/v/a? — x2) — sin"'(x/a) + C 17. Vx2 -1 8

19. In(1 + 2) 21 5%

23 3[sin'(x — 1) + (x — 1)y2x —x2] + C

25. ;In|3x+1+/9x2+ 6x— 8|+ C

27. s[tan'(x + 1) + (x + 1)/(x2+ 2x + 2)] + C

29. ;[e'v/9 — € + 9sin'(e/3)] + C

33. 3m/2  37. 0.81,2;2.10 --
39. rVR* — r2 + mr¥/2 — R? arcsin(r/R) 41. 2'1;._;

37
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WARM UP
Find the area enclosed by the ellipse: x2 y2

_I_
16 36

sketch (find area in first quadrant from x = 0 to x =4)

y="?

May 27, 2019
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recall: ¢ot29 +1=csc®@
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