6.5

Solving Quadratic Equations by Factoring

* O Try a common Soctor

a) Count terms:

L> 2 (Check for diff. of squares)

L> 3 (Simple or Hard Trinomial)

Solving Quadratic Equations ($ax^2 + bx + c = 0$)

$$\frac{2}{2} + \frac{4}{5} = 6$$
 $\frac{3}{2} \times \frac{4}{5} = 8$
 $\frac{3}{2} \times 4$

Method #1 Factoring

Add Multiply

Example 1:
$$x^2 + 6x + 8 = 0$$

Simple Trino

$$(x + 2)(x + 4) = 0$$

Either
$$x + 2 = 0$$
 or $x + 4 = 0$
 $x = -2$ $x = -4$
(2,0) x-ints (-4,0)

"Simple Trinomial"

Stop here for "factor"

Stop here for "solve"

Let's try one more...

$$x^{3} - 5x - 24 = 0$$
 $(x+3)(x-8) = 0$
 $x+3=0 \mid x-8=0$
 $x=-3 \mid x=8$

$$\frac{3}{3} + \frac{8}{8} = -5$$

$$\frac{3}{3} \times \frac{-8}{8} = -34$$

$$\frac{3 \times -8}{3 \times -8}$$

$$4 \times -6$$

Example 2:
$$2x^2 + 1x - 15 = 0$$

 $(x + 6)(x + -5) = 0$

$$(x + 3)(2x - 5) = 0$$

Either x+3 = 0 or 2x-5 = 0
 $x = -3$ $\frac{2x}{2} = \frac{5}{2}$
 $x = \frac{5}{2}$

"Hard Trinomial"

Multiply \Rightarrow -30 Add \Rightarrow 1 \pm + 6 and -5

Stop here for "factor"

Stop here for "solve"

Let's try a few more...

$$3x^{2} + 5x + 2 = 0$$

$$(x+2)(x+3) = 0$$

$$(3x+2)(x+1) = 0$$

$$3x+2 = 0 \quad x+1 = 0$$

$$x=-\frac{3}{3} \quad x=1$$

$$\frac{\frac{\partial}{\partial} \times \frac{3}{3}}{\frac{\partial}{\partial} + \frac{3}{3}} = \frac{6}{5} (3x^{2})$$

$$6x^2 + 14x + 8 = 0$$

$$3(3x^3 + 7x + 4) = 0$$

EXTRA STEP
$$\frac{3}{3} \times \frac{4}{4} = \frac{19}{7} (3 \times 4)$$

$$\frac{3}{3} + \frac{4}{4} = \frac{7}{7}$$

19

$$\frac{3(x+3)(x+4)=0}{3} = 0$$

$$(3(x+1)(3x+4)=0) = 0$$

$$\frac{3}{3}$$
 $\frac{3}{3}$ $\frac{1x10}{3x4}$ $\frac{3x}{4}$ $\frac{3x}{4}$ $\frac{5}{3}$

Example 3:
$$7x^2 + 4x = 0$$

$$x(7x + 4) = 0$$
Stop here for "factor"

Either $x = 0$ or $7x + 4 = 0$

$$\frac{7x}{7} = \frac{-4}{7}$$

$$x = \frac{-4}{7}$$
Stop here for "solve"

***Sometimes you may remove a common factor first and then end up with a simple trinomial, a hard trinomial, or a difference of squares.

Let's try one more...

Example 4:
$$4x^2 - 9 = 0$$
 "Difference of Squares" $(2x - 3)(2x + 3) = 0$ Stop here for "factor" Either $2x - 3 = 0$ or $2x + 3 = 0$
$$\frac{2x}{2} = \frac{3}{2}$$

$$\frac{2x}{2} = -\frac{3}{2}$$
 Stop here for "solve"

Let's try one more...

Using reasoning to write an equation from its roots

Tori says she solved a quadratic equation by graphing. She says the roots were -5 and 7. How can you determine an equation that she might have solved?

Philip's Solution

x = -5 or x = 7

x + 5 = 0 x - 7 = 0

One factor is x + 5.

The other factor is x - 7.

$$(x+5)(x-7) = 0$$

$$x^{2} + 5x - 7x - 35 = 0$$

$$x^{2} - 2x - 35 = 0$$

The x-intercepts of the quadratic function are the roots of the equation.

I decided to use the roots to help me write the factors of the equation.

I wrote the factors as a product. Since each root is equal to 0, their product is also equal to 0.

I simplified to write the equation in standard form.

In Summary

Key Idea

Some quadratic equations can be solved by factoring.

Need to Know

- To factor an equation, start by writing the equation in standard form.
- You can set each factor equal to zero and solve the resulting linear equations. Each solution is a solution to the original equation.
- If the two roots of a quadratic equation are equal, then the quadratic equation is said to have one solution.

Assignment: pages 323 - 324

Questions 1, 2(a-d), 6, 7, 11

Solutions => 6.5 Solving Quadratic Equations by Factoring

1. A M

a)
$$x^2-11x+28=0$$
 -4 x-7 = 28

 $(x-4)(x-7)=0$ -4 +-7 =-11

 $x-4=0$ or $x-7=0$
 $x=4$ $x=7$

b) $x^2-7x-30=0$ 3 $x-10=-30$
 $(x+3)(x-10)=0$ 3 +-10=-7

 $x+3=0$ or $x-10=0$
 $x=-3$ $x=10$

c)
$$3y^{2} + 11y + 5 = 0$$

 $(y + 1)(y + 10)$
 2
 $(2y+1)(y+5) = 0$
 $3y=-1$
 2
 $y=-1$
 2
 $3y=-1$
 $4y=-1$
 $4y=$

2.
$$\{a-d\}a\}$$
 $x^2-121=0$ (Difference of Squares)
 $(x-11)(x+11)=0$
 $x-11=0$ or $x+11=0$
 $x=11$ $x=-11$
b) $9r^2-100=0$ (Difference of Squares)
 $(3r-10)(3r+10)=0$
 $3r-10=0$ or $3r+10=0$
 $3r=\frac{10}{3}$ $3r=-\frac{10}{3}$
 $r=\frac{10}{3}$ $r=-\frac{10}{3}$

c)
$$\chi^2 - 15\chi = 0$$
 (Common Factor)
 $\chi(\chi - 15) = 0$
 $\chi = 0$ or $\chi - 15 = 0$
 $\chi = 15$

d)
$$3y^2 + 48y = 0$$
 (Common Factor)
 $3y(y+16) = 0$
 $3y = 0$ or $y+16=0$
 $y=0$
 $y=0$

6. Determine the roots of each equation.

a)
$$5u^2-10u-315=0$$

 $5(u^2-2u-63)=0$ $7 \times -9=-63$
 $5(u+7)(u-9)=0$ $7 + -9=-2$
 $u+7=0 \text{ or } u-9=0$
 $u=-7$ $u=9$

b)
$$0.25x^2 + 1.5x + 2 = 0$$

 $0.25(x^2 + 6x + 8) = 0$ $4 \times 2 = 8$
 $0.25(x + 4)(x + 2) = 0$ $4 + 2 = 6$
 $x + 4 = 0 \text{ or } x + 2 = 0$
 $x = -4$ $x = -2$

a)
$$1.4y^{2} + 5.6y - 16.8 = 0$$
 $1.4(y^{2} + 4y - 12) = 0$
 $1.4(y^{2} + 4y - 12) = 0$
 $1.4(y^{2} + 6)(y - 2) = 0$

7. The graph of a quadratic function has x-intercepts -5 and -12. Write a quadratic equation that has these roots. y = a(x-r)(x-s)Assuming a=1: y = (x--5)(x-12) y = (x+5)(x+12) $y = x^2+12x+60$ $y = x^2+17x+60$ Quadratic Equation => $x^2+17x+60=0$

11. Identify and correct the errors in this solution:

$$4r^{2}-9r=0$$

$$(2r-3)(2r+3)=0 \Rightarrow \text{Error}$$

$$3r-3=0 \text{ or } 3r+3=0$$

$$3r=3 \qquad 3r=-3$$

$$r=1.5 \text{ or } r=-1.5$$

$$4r^{2}-9r=0$$

$$r(4r-9)=0$$

$$r(4r-9)=0$$

$$r=0 \text{ or } 4r-9=0$$

$$4r=9$$

$$7=9$$

7s5e2 finalt.mp4

7s5e3 finalt.mp4

7s5e4 finalt.mp4

7s5e5 finalt.mp4

FM11-7s5.gsp