pg 365 #1,2,3,5,6

- 1. A graph is sometimes more useful than an equation because it is a visual representation of the speed. It allows you to see the relationships between the two variables easily.
- 2. The slope of a distance-time graph represents the speed of an object.
- 3. (a) A steep slope indicates that the car has a high speed.
- (b) A shallow or less steep slope indicates that the car has a lower speed.
 - (c) A zero slope indicates that the car is not moving.
- (d) A short straight line on the graph indicates that the car maintained a uniform speed for a short period of time.
- (e) A long straight line on the graph indicates that the car maintained a uniform speed for a long period of time.

5. (à)

Car Crossing Confederation Bridge

- (b) According to the graph, the distance travelled at the end of 5.0 min is 6.0 km.
- (c) According to the graph, the time required to cross over the 12.9-km bridge is 10.8 min.
- (d) The speed was constant, because the car travelled equal distances in equal time intervals.

rise =
$$\Delta d$$
 = (14.4 - 0) km = 14.4 km
run = Δt = (12.0 - 0) min = 12.0 km
slope = $\frac{\text{rise}}{\text{run}}$

$$\nu = \frac{\Delta d}{\Delta t}$$

$$= \frac{14.4 \text{ km}}{12.0 \text{ min}}$$

$$= 1.20 \frac{\text{km}}{\text{min}}$$

The slope of the graph is 1.20 km/min. This slope represents the average speed for the car crossing Confederation Bridge.

the car crossing Confederation Bridge.
(f)
$$v_{av} = 1.20 \frac{\text{km}}{\text{pain}} \times \frac{60 \text{ min}}{1 \text{ h}} = 72.0 \frac{\text{km}}{\text{km}}$$

The average speed of the car is 72.0 km/h.

6.a) Jerry has the greater speed b) $V_{3erry} = \frac{180 m - 60m}{155 - 55}$ = $\frac{120m}{105} = 12m/5$

 $V_{Tom} = \frac{90m - 30m}{15 = 5s}$ $= \frac{60m}{10s} = \frac{6m}{s}$

yes this matches my answer in (a)

c) if a rider stopped the graph would become a horizontal line

510 Unit Review Physics Answers Pg 376-377

$$7.a1d = 100$$

 $6 = 10.8$
 $6 = 10.8$

$$V = d = 100m = 9.26 = 9m/s$$
 $t = 10.85$

b)
$$d=200$$
 $t=d=200m=21.85=205$
 $v=9.17$ $v=9.17m/s=21.85=205$

10. a)
$$d = 35 \text{km}$$
 $v = \frac{d}{t} = \frac{35 \text{km}}{169 \text{ min}} = 0.207 \text{km/min}$
 $t = 169 \text{ min}$ $v = ?$

b)
$$v = 19 \text{km/h}$$
 $t = \frac{d}{V} = \frac{36 \text{km}}{19 \text{km/h}} = 1.8 \text{h}$
 $d = 35 \text{km}$

II. a) Bill
$$V = \frac{y_2 - y_1}{x_2 - x_1}$$
 $V = \frac{y_2 - y_1}{x_2 - x_1}$
 $V = \frac{y_2 - y_1}{x_2 - x_1}$

12. Analysis and Evaluation

(a) Using the evidence in Table 2, the following graph is obtained.

(b) A best-fit line is drawn, the rise and run of the line are measured, and the slope is calculated.

slope =
$$\frac{\text{rise}}{\text{run}}$$

 $v_{\text{av}} = \frac{\Delta d}{\Delta t}$
= $\frac{(50 - 0) \text{ m}}{(25 - 0) \text{ s}}$
= $2.0 \frac{\text{m}}{\text{s}}$

Heather's average swimming speed is 2.0 m/s.

(c) The design involves five observers with stopwatches. A more efficient design would use only one observer with a stopwatch at the 50-m mark. The speedometer of a car reads instant speed. Because it is the speed at that instant you are driving not an average of your overall speed.

2.
$$d = 139m$$
 $t = \frac{d}{V} = \frac{139m}{13.0 \text{ m/s}} = 10.7 \text{ s}$

4.
$$v = 50,000 \, \text{kmh}$$
 $d = v \neq 0.000 \, \text{kmh}$ $d = 1.500 \, \text{d} = 1.500 \, \text{$

5. b)
$$V = \frac{d_2 - d_1}{t_2 - t_1}$$
 or $\frac{V_2 - V_1}{x_2 - x_1}$
 $\frac{30 - 0m}{6 - 0s} = \frac{30m}{6s} = 5 \text{ m/s}$

Time (h)	Distance (km)
0	0
1	100
2	200
3	300
4	300
5	300

a. At 2 hours what was the cars distance? The car's distance at 2 hours was 200km

b. What was the total distance travelled by the car?

The total distance travelled by the car was 300km

Time (h)