Simple Interest

- Interest calculated as a percentage of the principal.

Compound Interest - The interest paid on the

$$A = P(1 + r)^{nt}$$

principal plus interest

A = final value of the investment . (principal + interest)

P = principal (mest/borrow)

r = annual interest rate (as a decimal)

n = number of compounding periods in a year

t = term of the investment or loan in number of years

Terminology Tango

	# of compounds per year		
annualy	» <u>1</u>		
semi-annually	→ 2		
quarterly	→ 4		
monthly	→ 12		
semi-monthly	→ 24		
bi-weekly	→ 26		
weekly	→ 52		
daily	⇒ 365		

Allison wants to invest \$2000.00. Her bank offers an investment option that earns compound interest at a <u>rate of 1.75%</u> per year compounded annually for <u>3 years</u>.

$$P = 2000.00$$
 $C = 0.0175$
 $C = 3$

	Interest period	Investment value at beginning of period	Interest earned I = Prt	Investmen t value at end of period
	1	\$2000	$2000 \times 0.0175 \times 1 = 35$	\$2035
I	2	\$2035	\$2035x0.0175x1=\$35.61	\$2070.61
	3	\$2070.61	\$2070.61x0.0175x1= \$36.24	\$2106.85

Allison wants to invest \$2000.00. Her bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 10 years.

Interest period	Investment value at beginning of period	Interest earned I = Prt	Investment value at end of period
1	\$2000	\$2000x0.0175x1= \$35	\$2035
2	\$2035	\$2035x0.0175x1=\$35.61	\$2070.61
3	\$2070.61	\$2070.61x0.0175x1= \$36.24	\$2106.85

??

Formula:
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

A = final value of the investment ...(principal + interest) A = ?

P = principal P = 2000

n = number of compounding periods in a year <math>n = 1

t = term of the investment or loan in number of years <math>t = to

Allison wants to invest \$2000.00. Her bank offers an investment option that earns compound interest at a rate of 1.75% per year compounded annually for 10 years.

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = 2000 \left(1 + \frac{0.0175}{1}\right)^{(1)(10)}$$

$$A = 2000(1 + 0.0175)^{10}$$

$$A = 2000(1.0175)^{10}$$

$$A = 2000(1.18944)$$

$$A = $2378.89$$

Calculate the final value of an initial investment of \$6000.00. Interest is paid at 4% per annum, compounded semi-annually, for three years.

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

$$P = 6000.00$$

$$A = 6000 \left(1 + \frac{0.04}{0} \right)$$

$$A = 6000 \left(1.00 \right)^{6}$$

Calculate the final value of an initial investment of \$8500.00. Interest is paid at 3.75% per annum, compounded semi-annually, for three years.

How much Interest did they earn?

$$I = A - P$$

$$\frac{I = 89509.91 - 8500.00}{I = 1009.91}$$

.

Homework

Compound Interst - Dzy#2

1.
$$A = P(1 + \frac{1}{h})^{n+1}$$
 $A = 6300(1 + 0.016)^{2+(6)}$
 $A = 6300(1.0006)^{1+4}$
 $A = 6300(1.100727856)$
 $A = 6300(1.230998208)$
 $A = 6300(1.230998208)$
 $A = 63077.50$
 $A = 63077.50$

3.
$$A = P \left(1 + \frac{r}{n}\right)^{n+1}$$

$$2000 = P \left(1 + \frac{0.062}{12}\right)^{12(2)}$$

$$2000 = P \left(1.00516\right)^{24}$$

$$2000 = P \left(1.13165455\right)$$

$$1.13165455$$

$$1.13165455$$

$$P = 1767.32$$

4.
$$A = P(1+\frac{1}{h})^{n+1}$$
 $A = 3500(1+0.005)^{(26)(6)}$
 $A = 3500(1.00019230+)^{156}$
 $A = 3500(1.030451562)$
 $A = \frac{4}{3606.68}$

5. $A = P(1+\frac{1}{h})^{n+1}$
 $A = 5000(1.075)^{(3)(10)}$
 $A = 5000(1.075)^{10}$
 $A = 5000(1.061031562)$
 $A = 10305.16$

6.
$$A = P(1 + \frac{r}{n})^{n+1}$$
 $7540 = P(1 + \frac{0.018}{52})^{(52)}(5)$
 $7500 = P(1.000346154)^{260}$
 $7500 = P(1.094187244)$
 $1.094157341 = \frac{1.094187244}{6854.59}$

7.
$$A = P(1 + \frac{1}{h})^{n+}$$
 $A = 4200(1 + \frac{0.0005}{365})^{(565)(10)}$
 $A = 4200(1.00000137)^{3650}$
 $A = 4221.05$

8. $A = P(1 + \frac{1}{h})^{n+}$
 $A = 6400(1 + \frac{0.062}{2})^{(2)(5)}$
 $A = 6400(1.031)^{10}$
 $A = 6400(1.357031264)$
 $A = 8684.94 - 6400 = (3.284.94)$

Quick way to estimate how long it will take your money to double in value.

72

annual interest rate

How long will it take an investment to double with an interest rate of 3.00% per annum?

$$\frac{72}{3}$$
 = 24 years