Oct 7, 2019

- 1) go over answers to HW questions
- 2) Balancing Equations

co-efficient

Quiz Thursday on Balancing Equations!!

Warm-Up

count the atoms in each of the following:

N ₂ OO	2 sodium		3 calcium
Na ₂ CO ₃	1 carbonate	ِ 'لِـُــا' الله	2 phosphate
Type of Atom	# of atoms	Type of Atom	# of atoms
Na (sodium)	2	Ca (calcium)	3
C (carbon)	1	P (phosphorou	us) 2
O (oxygen)	3	O (oxygen)	8
K ₂ CrO ₄		3BaCl ₂	
Type of Atom	# of atoms		
K (potassium)	2	Type of Atom	# of atoms
Cr (chromium)	1	Ba (barium)	3
O (oxygen)	4	CI (chlorine)	6
$NH_4C_2H_3O_2$ 1	ammonium	$\sqrt{4Al_2CO_3}$	8 aluminum
Type of Atom	# of atoms		
N (nitrogen)	1		atoms 12 carbonate
H (hydrogen)	7	Al (aluminum) 8	
O (oxygen) carbon (C)	2	C (carbon) 12 O (oxygen) 36	
Dh/NO	² 1 lead		4
$PD(NO_3)_2$	2 nitrate	$2(NH_4)_2Cr_2O_7$	4 ammonium
Type of Atom	# of atoms	Type of Atom # of a	
Pb (lead)	1	N (nitrogen) 4	14 oxy gen
N (nitrogen)	2	H (Hydrogen) 16	
O (oxygen)	6	Cr (chromium) 4	
		O (oxygen) 14	

Recall Law of Conservation of Mass

that matter is neither lost nor gained in chemical reactions; it simply changes form.

so when you look at a chemical reaction it must have the same number of atoms of each element in the reactants and in the products.

_

Example with Chemical Equations

(skeletal agn)

i.e.
$$H_2 + O_2 \Rightarrow H_2O$$
 is correctly written as $2H_2 + O_2 \Rightarrow 2H_2O$

We add coefficients (numbers in front of the formulas) to create more atoms and follow the law!!

You cannot change subscripts or rearrange chemical equations!!!

Tips for Balancing Chemical Reactions

• Create a chart to help Count the Atoms! and see what you need to balance.

i.e.
$$CH_4 + O_2 \Rightarrow$$

$$CO_2 + H_2O$$

ATOM	REACTANTS	PRODUCTS
С	1	1
Η	4	2
0	2	3

- You can only add coefficients (number in front of formula)
- Balance each atom individually, unless it appears to be a polyatomic compound (SO₄, CO₃, PO₄ etc)
- Start with elements that occur in only one compound on each side of the equation. (referred to as easy atoms)
- Balance oxygen as your last element if it appears in more than one compound on each side of the equation.

HW Complete Balancing Worksheet 6.5c