

Polynomial conjugate Product
$$(x+3)$$
 $(x-3)$ $(x-3)$ $(x-7)$ $(x+7)$ $(x+7)$

Difference of Squares!

Factor:

1.
$$x^2 - 16$$

$$(x + 4)(x - 4)$$

$$\sqrt{x^3} = x$$

$$\sqrt{6} = 4$$

Difference of Squares!

Factor:

2.
$$-25 + z^2$$

$$= 2^3 - 25$$

$$(2 + 5)(2 - 5)$$

Try these...

1.
$$\underline{x}^2 - 100$$

1.
$$x^2 - 100$$
 2. $-36 + y^2$ $y^2 - 36$ $(y + 6)(y - 6)$

3.
$$81x^2 - 49b^2$$
 4. $(Math)^2 - 4$ $(9x+7b)(9x-7b)$ (Math+2)(Math-2)

4.
$$\frac{(Math)^2 - 4}{(Math - 3)}$$

5.
$$\frac{9}{64} - z^2$$
 6. $p^{10} - 64$

6.
$$p^{10} - 64$$

$$(\frac{3}{8}+2)(\frac{3}{8}-2)$$

$$(\frac{3}{8}+2)(\frac{3}{8}-2)$$
 $(p^{5}+8)(p^{5}-8)$

The ultimate question!

How many terms?
$$\frac{(x-3)^2-25(w+2)^2}{(x-3)^4-5(w+3)[x-3]-5(w+3)}$$
 $\frac{(x-3)^4-5(x-3)^2-5(x-3)}{(x-3)^2-5(x-3)}$
 $\frac{(x-3)^2-25(w+2)^2}{(x-3)^2-5(x-3)}$
 $\frac{(x-3)^2-5(x-3)^2}{(x-3)^2-5(x-3)}$
 $\frac{(x-3)^2-5(x-3)^2}{(x-3)^2-5(x-3)^2}$