1. Organize the prices below from lowest to highest unit rate.

careful!!	355 mL of pop	\$0.44
	2 L of pop	\$1.39
	1 L of pop	\$0.64

2. Jennifer is making a punch for her mother's birthday. The recipe calls for 2 cups of ginger ale, 4 cups of Sprite and, 5 cups of lemonade. If Jennifer needs to fill a punch bowl that holds 25 cups, how much of each will she need?

3. Tanya is a nurse. she needs to measure and administer the correct dose of medicine to her patients. 150 mg of medicine must be dissolved into 275 mL of water. If the patient requires a dose of 500 mg of medicine, how much water is needed? Round to the nearest millilitre.

1. Organize the prices below from lowest to highest unit rate.

355 mL of pop	\$0.44
2 L of pop	\$1.39
1 L of pop	\$0.64

Convert 355 ml to litres
355/1000 = 0.355 L

1L $$0.64 \rightarrow = $0.64/L$ 2L $$1.39 \rightarrow = $0.70/L$

355ml \$0.44 → = \$1.24/L

2. Jennifer is making a punch for her mother's birthday. The recipe calls for 2 cups of ginger ale, 4 cups of Sprite and, 5 cups of lemonade. If Jennifer needs to fill a punch bowl that holds 25 cups, how much of each will she need?

3. Tanya is a nurse. She needs to measure and administer the correct dose of medicine to her patients. 150 mg of medicine must be dissolved into 275 mL of water. If the patient requires a dose of 500 mg of medicine, how much water is needed? Round to the nearest millilitre.

Let
$$x = Water$$

Medicine (mg) Water (mL)

$$150x = 137500$$

$$\frac{150x}{150} = \frac{137500}{150}$$

Homework

O ginger ale = 8

Grenadine = 1

Total = 9

Let
$$x = ginger ale$$

ginger ale

 $4 = 8$
 $4 = 9$
 $4 = 9$
 $4 = 9$
 $4 = 9$

$$9x = 96$$

 $x = 10.7$ curves of ginger ale.

$$\frac{94}{1900} = \frac{10}{x}$$

$$\frac{5x}{5} = \frac{2366}{5}$$

$$\frac{6x}{6} = \frac{66.88}{6}$$

$$\frac{35x}{35} = \frac{93.7}{35}$$

$$0 \quad \omega_{\text{Ins}} = \underline{6} \quad \text{a)} \quad \underline{\omega_{\text{Ins}}} = \underline{6} \quad \underline{3}$$

$$|\cos s = \underline{3}| \quad \cot a| \quad \underline{5}$$

ties =
$$\frac{1}{2}$$
 by $\frac{10888}{101} = \frac{3}{10}$

d) Let
$$x = wins$$

Let $y = losses$
 $|soses|$
 $|soses|$

e) Let
$$x = wins$$

Let $y = losses$
 $83 - 49 - 35$
 $losses$
 10×83
 $losses$
 10×83
 $losses$
 $losses$