Transformations of Exponential Functions

Focus on...

- applying translations, stretches, and reflections to the graphs of exponential functions
- representing these transformations in the equations of exponential functions
- · solving problems that involve exponential growth or decay

Link the Ideas

The graph of a function of the form $f(x) = a(c)^{b(x-h)} + k$ is obtained by applying transformations to the graph of the base function $y = c^x$, where c > 0.

Example 1

Apply Transformations to Sketch a Graph

Consider the base function $y = 3^x$. For each transformed function,

- i) state the parameters and describe the corresponding transformations
- ii) create a table to show what happens to the given points under each transformation

$y = 3^x$	
$\left(-1,\frac{1}{3}\right)$	
(0, 1)	
(1, 3)	
(2, 9)	
(3, 27)	

- iii) sketch the graph of the base function and the transformed function
- iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts

a)
$$y = 2(3)^{x-4}$$

b)
$$y = -\frac{1}{2}(3)^{\frac{1}{5}x} - 5$$

Solution

- a) i) Compare the function $y = 2(3)^{x-4}$ to $y = a(c)^{b(x-h)} + k$ to determine the values of the parameters.
 - b = 1 corresponds to no horizontal stretch.
 - a = 2 corresponds to a vertical stretch of factor 2. Multiply the y-coordinates of the points in column 1 by 2.
 - h = 4 corresponds to a translation of 4 units to the right. Add 4 to the x-coordinates of the points in column 2.
 - k = 0 corresponds to no vertical translation.
 - ii) Add columns to the table representing the transformations.

$y = 3^x$	$y = 2(3)^{x-4}$	
$\left(-1,\frac{1}{3}\right)$	(3,3/3)	
(0, 1)	(4, 2)	
(1, 3)	(5.6)	
(2, 9)	(6, 18)	
(3, 27)	(7,54)	

iii) To sketch the graph, plot the points from column 3 and draw a smooth curve through them.

iv) The domain remains the same: $\{x \mid x \in R\}$.

The range also remains unchanged: $\{y \mid y > 0, y \in R\}$.

The equation of the asymptote remains as y = 0.

There is still no *x*-intercept, but the *y*-intercept changes to $\frac{2}{81}$ or approximately 0.025.

b)
$$y = -\frac{1}{2}(3)^{\frac{1}{5}x} - 5$$

- i) state the parameters and describe the corresponding transformations
- ii) create a table to show what happens to the given points under each transformation
- iii) sketch the graph of the base function and the transformed function
- iv) describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts

b)
$$y = (-\frac{1}{2})(\underline{3})^{\frac{1}{5}x} - \underline{5}$$

c - bas = 3

(i) a= - 1 -> vertical stretch by a Jactor of 1/3 and a vertical reflection in the x-axis

$$b = \frac{1}{5} \Rightarrow \text{ horizontal by a factor of } 5$$

h=0 → no horizontal translation

K=-5 -> vertical translation 5 units down

(11)
$$(x_1y) \rightarrow [5x, -\frac{1}{3}y-5]$$

 $y=3^{x}$
 $x \mid y$
 $-\frac{1}{3}(\frac{1}{4})-5$
 $-\frac{1}{3}(\frac{1}{4})-5$

$$x \text{ inf } (y=0)$$

$$y = -\frac{1}{3}(3)^{\frac{1}{5}x} - 5$$

$$0 = -\frac{1}{3}(3)^{\frac{1}{5}x} - 5$$

$$y = -\frac{1}{3}(1)^{\frac{1}{5}x} - 5$$

(0,-5,5)

Your Turn

Transform the graph of $y = 4^x$ to sketch the graph of $y = 4^{-2(x+5)} - 3$. Describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts.

Homework

#1-7 and #10 on page 354