Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

Questions from Homework

- 5. Identify the following characteristics of the graph of each function.
 - i) the equation of the asymptote
 - ii) the domain and range
 - iii) the y-intercept, to one decimal place if necessary
 - iv) the x-intercept, to one decimal place if necessary
 - a) $y = -5 \log_3 (x + 3)$
 - **b)** $y = \log_6 (4(x+9))$
 - c) $y = \log_5(x+3) 2$
 - **d)** $y = -3 \log_2 (x + 1) 6$

a)
$$y = \frac{5}{5} \log_3(x + \frac{3}{2})$$
 $c = 3(base)$

(1)
$$VA$$
: $X = -3$

(i) D:
$$\{X \mid X > -3, X \in R\}$$
 or $(-3, \infty)$

R. Eylych? or
$$(-\infty,\infty)$$

(ui) $y-int (x=0)$
 $y=-5log_3(x+3)$
 $y=-5log_3(0+3)$
 $y=-5log_3(3)$
 $y=-5log_3(x+3)$
 $y=-5(1)$
 $y=-5(1)$
 $y=-5(1)$
 $y=-5$
 y

b)
$$y = -\frac{3}{3}\log_{3}(x_{\pm 1}) - \frac{6}{6}$$
 $c = \frac{3}{6} \pmod{3}$
 $a = -3$ (1) VA ; $X = -1$
 $b = 1$ (1) D : $\{x | X > -1, x \in K\}$ or $(-1, \infty)$
 $k = -1$
 $k = -6$
 $k = -6$

(ii) y-int (x=0)

$$y = -3\log_3(x+1) - 6$$

 $y = -3\log_3(0+1) - 6$
 $y = -3\log_3(1) - 6$
 $y = -3\log_3(x+1) - 6$

Questions from Homework

11. Explain how the graph of $\frac{1}{3}(y+2) = \log_6(x-4)$ can be generated by transforming the graph of $y = \log_6 x$.

3.
$$\frac{1}{3}(y+2) = \log_6(x-4)$$
 (Multiply a+K)
 $y+3 = 3\log_6(x-4)$
 $y = 3\log_6(x-4) - 2$
 $a=3 \Rightarrow \text{ vertical stretch by a factor of 3}$
 $b=1 \Rightarrow \text{ no horizontal stretch}$
 $h=4 \Rightarrow \text{ translated 4 units right}$
 $K=-2 \Rightarrow 11 \Rightarrow 0 \text{ units down.}$

$$x-inf (y=0)$$
 $y = 3 \log_{6}(x-4)-3$
 $3 = 3 \log_{6}(x-4)-3$
 $3 = \log_{6}(x-4)$
 $3 = \log_{6}(x-4)$ (log)

 $3 = x-4$ (exp.)

 $3 = x-4$

7.3 = X

$$y = 3\log_6(x-4) - 3$$
 $y = 3\log_6(x-4) - 3$
 $y = 3\log_6(-4) - 3$
 $y = 3\log_6(-4) - 3$
No yint

General Properties of Logarithms:

If c > 0 and $c \ne 1$, then... (i) $\log_c 1 = 0$ (ii) $\log_c c^x = x$ (iii) $c^{\log_c x} = x$

(i)
$$\log_{c} 1 = 0$$

(ii)
$$\log_{\mathbf{C}} e^{x} = x$$

(iii)
$$c^{\log_{c} x} = x$$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(i)
$$\log_3 l = 0$$
 (ii) $\log_3 l = 3$ (iii) $\gamma \log_3 49 = 49$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\begin{split} MN &= (c^x)(c^y) \\ MN &= c^{x+y} \\ \log_c MN &= x+y \\ \log_c MN &= \log_c M + \log_c N \end{split} \qquad \text{Apply the product law of powers.}$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$

Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$

Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Substitute for x and y.

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$. Let P be a real number.

$$\begin{aligned} M &= c^x \\ M^p &= (c^x)^p \\ M^p &= c^{xp} \end{aligned} & \text{Simplify the exponents.} \\ \log_c M^p &= xP & \text{Write in logarithmic form.} \\ \log_c M^p &= (\log_c M)P & \text{Substitute for } x. \end{aligned}$$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c \underline{MN} = \log_c M + \log_c N$$

Quotient Law of Logarithms

$$Ex: \log 50 + \log 3 = \log (50.3)$$

$$= \log 100$$

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

$$Ex: log_6 36 - log_6 4 = log_6 (\frac{36}{4})$$

$$= log_6 9$$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

$$= \frac{1}{3}$$
 $= \frac{1}{3}$

Homework

Finish Exercise 2

Example 1

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

a)
$$\log_5 \frac{xy}{z}$$

b)
$$\log_7 \sqrt[3]{X}$$

c)
$$\log_{6} \frac{1}{x^{2}}$$

d)
$$\log \frac{X^3}{V\sqrt{Z}}$$

a)
$$\log_5 \frac{xy}{z} = (\log_5 x + \log_5 y - \log_5 z)$$

b)
$$\log_7 \sqrt[3]{x} = \log_7 x^3 = \left[\frac{1}{3}\log_7 x\right]$$

c)
$$\log_6 \frac{1}{x^3} = \log_6 1 - \log_6 x^3$$

$$= 0 - \partial \log_{6} x$$

$$= [-\partial \log_{6} x]$$

d)
$$\log \frac{x^3}{y\sqrt{z}} = \log x^3 - (\log y + \log \sqrt{z})$$

$$= \log x - \log y - \log \sqrt{z}$$

$$= 3\log x - \log y - \frac{1}{\delta}\log z$$

Example 2

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression.

- a) $\log_6 8 + \log_6 9 \log_6 2$
- **b)** $\log_7 7\sqrt{7}$
- c) $2 \log_2 12 \left(\log_2 6 + \frac{1}{3} \log_2 27\right)$

a)
$$\log_{6} 8 + \log_{6} 9 - \log_{6} 3$$

$$= \log_{6} (\frac{8 \cdot 9}{2})$$

$$= \log_{6} 36$$

$$= 0$$

$$= (1 + \frac{1}{3})$$

$$= \frac{3}{3} + \frac{1}{3}$$

$$= \frac{3}{3} + \frac{1}{3} + \frac{1}{3}$$

$$= \frac{3}{3} + \frac{1}{3} + \frac{1}{3}$$

$$= \frac{3}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3$$

Example 3

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x - 2) - \log_5 (x^2 + 2x - 3)$$

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_{c} MN = \log_{c} M + \log_{c} N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_c \frac{M}{N} = \log_c M - \log_c N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

Many quantities in science are measured using a logarithmic scale. Two
commonly used logarithmic scales are the decibel scale and the pH scale.

Homework

Do I really understand??...

- a) Express the following as a single logarithm... $2\log_2 3^2 + \log_2 6 3\log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 (\log_b x^2 - 2\log_b x) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$