Understanding Logarithms

Focus on...

- demonstrating that a logarithmic function is the inverse of an exponential function
- sketching the graph of $y = \log_c x$, c > 0, $c \ne 1$
- determining the characteristics of the graph of $y = \log_c x$, c > 0, $c \ne 1$
- · explaining the relationship between logarithms and exponents
- expressing a logarithmic function as an exponential function and vice versa
- · evaluating logarithms using a variety of methods

Exide Glog₃x - Glog₃x⁴ + log₃x
$$log_3x^5 - log_3(x^4)^3 + log_3x$$

$$log_3x^5 - log_3x^3 + log_3x$$

$$log_3(\frac{x^5 \cdot x}{x^3})$$

$$log_3(\frac{x^6}{x^3})$$

$$log_3x^4$$

$$4 log_3x$$

General Properties of Logarithms:

If c > 0 and $c \neq 1$, then...

- (i) $\log_{\mathbf{c}} 1 = 0$
- (ii) $\log_{\mathbf{c}} \mathbf{c}^{x} = x$
- (iii) $c^{\log_c x} = x$

Did You Know?

The input value for a logarithm is called an argument. For example, in the expression log₆ 1, the argument is 1.

(i)
$$\log_5 1 = 0$$
 (ii) $\log_5 3^3 = 3$ (iii) $\gamma^{\log_5 49} = 49$

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c MN = \log_c M + \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\begin{split} MN &= (c^x)(c^y) \\ MN &= c^{x+y} \\ \log_c MN &= x+y \\ \log_c MN &= \log_c M + \log_c N \end{split} \qquad \text{Apply the product law of powers.}$$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Proof

Let $\log_c M = x$ and $\log_c N = y$, where M, N, and c are positive real numbers with $c \neq 1$.

Write the equations in exponential form as $M = c^x$ and $N = c^y$:

$$\frac{M}{N} = \frac{c^x}{c^y}$$

$$\frac{M}{N} = c^{x-y}$$

Apply the quotient law of powers.

$$\log_c \frac{M}{N} = x - y$$

Write in logarithmic form.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

Substitute for x and y.

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Proof

Let $\log_c M = x$, where M and c are positive real numbers with $c \neq 1$.

Write the equation in exponential form as $M = c^x$. Let P be a real number.

$$\begin{aligned} M &= c^x \\ M^p &= (c^x)^p \\ M^p &= c^{xp} \end{aligned} & \text{Simplify the exponents.} \\ \log_c M^p &= xP & \text{Write in logarithmic form.} \\ \log_c M^p &= (\log_c M)P & \text{Substitute for } x. \\ \log_c M^p &= P\log_c M \end{aligned}$$

The laws of logarithms can be applied to logarithmic functions, expressions, and equations.

Product Law of Logarithms

The logarithm of a product of numbers can be expressed as the sum of the logarithms of the numbers.

$$\log_c \underline{MN} = \log_c M + \log_c N$$

 $= \log 100$ $= \log 100$ $= \log 100$

Quotient Law of Logarithms

The logarithm of a quotient of numbers can be expressed as the difference of the logarithms of the dividend and the divisor.

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

 $Ex: log_6 36 - log_6 4 = log_6 (\frac{36}{4})$ $= log_6 9$

Power Law of Logarithms

The logarithm of a power of a number can be expressed as the exponent times the logarithm of the number.

$$\log_c M^p = P \log_c M$$

How could you prove the quotient law using the product law and the power law?

Express as a single logarithm:

$$\log_{3}(x)^{3} - \log_{3}(x)^{3} - \log_{3}(2)^{4}$$

$$\log_3\left(\frac{\lambda_3}{\lambda_3}\right)$$

8

Questions from Homework

$$\frac{\log u = m}{\log u} \quad (\log solu)$$

h)
$$\log_4 8 = 1.5$$
 $\longrightarrow \text{Let } x = \log_4 8$

$$\log_4 8 = 1.5$$

$$\log_4 8 = 1.5$$

$$4^x = 8$$

$$8^x = 8^3$$

$$3x = 3$$

$$x = 3$$

$$x = 3$$

$$\frac{\text{P}}{\text{S}} = \frac{1}{\text{S}} = \frac{4}{\text{exp}}$$

$$\frac{1}{\text{S}} = \frac{1}{\text{exp}}$$

$$\frac{3}{\text{exp}} = \frac{1}{\text{exp}}$$

$$\frac{1}{\text{exp}} = \frac{1}{\text{exp}}$$

$$\frac{1}{\text{exp}} = \frac{1}{\text{exp}}$$

$$\frac{3}{\text{exp}} = \frac{3}{\text{exp}}$$

$$\frac{3}{\text{exp}} = \frac{3}{\text{exp}}$$

$$\frac{3}{\text{exp}} = \frac{3}{\text{exp}}$$

$$\frac{3}{\text{exp}} = \frac{3}{\text{exp}}$$

$$\bigoplus_{\text{log}} e) \quad \partial^{1-x} = 3 \quad (\exp_{\text{form}})$$

$$X = 1 - \log_3 3$$

Questions from Homework

Exercise 2

(3) b)
$$\log_3 30 = 5$$
 g) $\log_3 (60) = -3$ $\log_3 (60) = -3$ $\log_3 (60) = -3$ $\log_3 (60) = -3$

j)
$$log_{9}l_{3} = 0.35$$

$$\frac{log(l_{3})}{log_{9}} = 0.35 \text{ or } \frac{l}{q}$$

h)
$$10^{5} = 3$$
 (Exp. form)

Base ans

 $\log_{10}(3) = 5^{x}$ (Exp form)

 cns
 $\log_{10}(3) = 5^{x}$

1

Example 1

Use the Laws of Logarithms to Expand Expressions

Write each expression in terms of individual logarithms of x, y, and z.

- a) $\log_5 \frac{xy}{z}$
- **b)** $\log_7 \sqrt[3]{X}$
- c) $\log_6 \frac{1}{X^2}$
- **d)** $\log \frac{X^3}{V\sqrt{Z}}$

a)
$$\log_5 \frac{xy}{z}$$

$$\log_5 x + \log_5 y - \log_5 z$$

c)
$$\log_6 \frac{1}{x^3}$$
 $\log_6 1 - \log_6 x^3$
 $0 - 2\log_6 x$
 $-2\log_6 x$

Example 2

Use the Laws of Logarithms to Evaluate Expressions

Use the laws of logarithms to simplify and evaluate each expression.

- a) $\log_6 8 + \log_6 9 \log_6 2$
- **b)** $\log_7 7\sqrt{7}$
- c) $2 \log_2 12 \left(\log_2 6 + \frac{1}{3} \log_2 27\right)$

a)
$$\log_{6} 8 + \log_{9} 9 - \log_{6} 3$$

$$\log_{6} \left(\frac{8 \cdot 9}{3}\right)$$

$$\log_{6} \left(\frac{8 \cdot 9}{3}\right)$$

$$\log_{7} 7 + \log_{7} 7$$

Example 3

Use the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm in simplest form. State the restrictions on the variable.

a)
$$\log_7 x^2 + \log_7 x - \frac{5 \log_7 x}{2}$$

b)
$$\log_5 (2x-2) - \log_5 (x^2 + 2x - 3)$$

a)
$$\log_{1}x^{3} + \log_{1}x - 5\log_{1}x$$

$$\log \left(\frac{x_3 \cdot x}{x_2 \cdot x}\right)$$

$$\log_{1}\left(\frac{x^{3}}{x^{5/3}}\right)^{3}$$

$$\frac{1}{2}\log_2 x$$

For the original expression to be defined, both logarithmic terms must be defined.

$$2x-2>0 \qquad x^2+2x-3>0 \qquad \text{What other methods could} \\ 2x>2 \qquad (x+3)(x-1)>0 \qquad \text{you have used to solve this} \\ x>1 \quad \text{and} \quad x<-3 \text{ or } x>1$$

The conditions x > 1 and x < -3 or x > 1 are both satisfied when x > 1.

Hence, the variable x needs to be restricted to x > 1 for the original expression to be defined and then written as a single logarithm.

Therefore, $\log_5 (2x - 2) - \log_5 (x^2 + 2x - 3) = \log_5 \frac{2}{x + 3}$, x > 1.

Key Ideas

• Let P be any real number, and M, N, and c be positive real numbers with $c \neq 1$. Then, the following laws of logarithms are valid.

Name	Law	Description
Product	$\log_{c} MN = \log_{c} M + \log_{c} N$	The logarithm of a product of numbers is the sum of the logarithms of the numbers.
Quotient	$\log_c \frac{M}{N} = \log_c M - \log_c N$	The logarithm of a quotient of numbers is the difference of the logarithms of the dividend and divisor.
Power	$\log_c M^p = P \log_c M$	The logarithm of a power of a number is the exponent times the logarithm of the number.

Many quantities in science are measured using a logarithmic scale. Two
commonly used logarithmic scales are the decibel scale and the pH scale.

Homework Finish Exercise 3

Exercise 2

Helist of

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$
 $\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$
 $\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$
 $\frac{1}{3} = \frac{3}{3} = \frac{3}{3}$
 $\frac{1}{3} = \frac{3}{3} =$

Exercise 3.

Oi) log₁₀
$$\frac{x^3y^4}{2^5}$$

log x^3 + log y^4 - log z^6

3 log x + 4 log y - 6 log z

(3) d)
$$4 \log_{3} x - \frac{1}{3} \log_{3} (x^{3}+1) + \log_{3} (x-1)$$

$$\log_{3} x^{4} - \log_{3}(x^{3}+1)^{1/3} + \log_{3}(x-1)$$

$$\int_{\mathcal{S}} \int_{\mathcal{S}} \frac{1 + e^{\chi} \sqrt{1 + 1}}{\sqrt{1 + e^{\chi} \sqrt{1 + 1}}} \int_{\mathcal{S}} e^{\zeta d}$$

$$\log_{s}(x^{2}-1) - \log_{s}(x-1)$$

$$\log_{s}\left(\frac{x^{2}-1}{x-1}\right) \cdot \int_{s=0}^{\infty} \int_{s=0}^{\infty} \log_{s}(x-1) dx dx$$

$$\log_{s}\left(\frac{x^{2}-1}{x-1}\right) \cdot \int_{s=0}^{\infty} \log_{s}(x-1) dx dx$$

$$\log_{s}\left(\frac{x^{2}-1}{x-1}\right) \cdot \int_{s=0}^{\infty} \log_{s}(x-1) dx dx$$

$$\log_{s}\left(\frac{x^{2}-1}{x-1}\right) \cdot \int_{s=0}^{\infty} \log_{s}(x-1) dx$$

Questions from Homework

Exercise 3

$$3e > \frac{1}{3} \left[\log_5 x + \log_5 y - \log_5 z^2 \right]$$

$$\frac{1}{3} \left[\log_5 x + \log_5 y^3 - \log_5 z^3 \right]$$

$$\frac{1}{3} \left[\log_5 \left(\frac{xy}{z^3} \right)^{\frac{1}{3}} \right]$$

$$\log_5 \left(\frac{xy}{z^3} \right)^{\frac{1}{3}}$$

$$\log_5 \sqrt{\frac{xy^3}{z^3}}$$

$$\log_5 \sqrt{\frac{xy^3}{z^3}}$$

Do I really understand??...

- a) Express the following as a single logarithm... $2 \log_2 3^2 + \log_2 6 3 \log_2 3$
- b) Evaluate the following... $\log_2(32)^{\frac{1}{3}}$
- c) Express the following as a single logarithm... $\frac{1}{2} [(\log_5 a + 2\log_5 b) 3\log_5 c]$
- d) Express as a single logarithm in simplest form...

$$\frac{3}{4} \left[12 (\log_b x^2 - 2\log_b x) + 8\log_b \sqrt{x} - 4\log_b \frac{1}{x^7} \right]$$

Quiz!

Exercise 2

Exercise 3

Assignment -> x and y-intercepts