Rational Exponents

4

Rational Exponent?

0.5

4

Rational Numbers: Any number that can be written in fraction form is a rational number. This includes integers, terminating decimals, and repeating decimals as well as fractions. ... So, any terminating decimal is a rational number.

What if...

Rational Exponents

to

Radicals

$$= \left(\frac{3}{195}\right)^{3}$$

$$= \left(\frac{3}{195}\right)^{3}$$

Express the radical as a power.

Let's Take a Gloser Look!!

Fill in the chart. (You can use your calculator!!)

x	$x^{\frac{1}{2}} = \sqrt{\mathbf{x}}$		x	$x^{\frac{1}{3}} = \sqrt[3]{x}$
1	$1^{\frac{1}{2}} = \sqrt{1} = 1$		1	1/3=3/1=1
4	$4^{\frac{1}{2}} = \sqrt{4} = 3$	Perfect	8	8 1/3 = 3/8 = 3
9	9/3=19=3	aubes .	27	37 ¹³ = 377=3
16	1612= 116 = 4		64	64 1/3 = 3/64=4
25	25%=1 <u>35</u> =5		125	1851/3=3/05=5

What do you notice?

$$\sqrt[3]{\partial \gamma} = \sqrt[3]{3 \cdot 3 \cdot 3}$$
$$= 3$$

Our Conclusion

- Raising a number to an exponent of 1/2 is equivalent to taking the square root!
- Raising a number to an exponent of 1/3 is equivalent to taking the cube root!

$$\mathbf{x}^{1/\mathbf{n}} = \sqrt[\mathbf{n}]{\mathbf{x}}$$

Practice Questions

Calculate each of the following without using a calculator:

27 ^{1/3}	$100^{1/2}$	$16^{1/4}$
= 3/27	= 1100	- 4/16
= 3	= (10)	(3)

Calculate each of the following without using a calculator:

$$36^{0.5}$$

$$=\sqrt{36}$$

$$= 32^{3/6}$$

$$= 33^{1/5}$$

$$625^{0.25}$$

Calculate each of the following without using a calculator:

Therefore:
$$\mathbf{x}^{\mathbf{m/n}} = (\sqrt[n]{\mathbf{x}})^{\mathbf{m}}$$

Write as a power:

$$(\sqrt[4]{625})^{\frac{9}{4}}$$

Calculate the following

without using a calculator:

$$128^{1/7} \qquad 343^{2/3}$$

$$= \sqrt{138} \qquad = (\sqrt{343})^3$$

$$= \sqrt{1}$$

$$= \sqrt{1}$$

$$= \sqrt{49}$$

Calculate the following without using a calculator:

Check out page 227.

Questions:

5, 6,

7a,b, f

8,

= $\frac{1}{2}$ Mixed number = $\frac{5}{2}$ improper fraction 10a,c,f,

11, 15