Warm Up

If the length of a square is growing at a rate of 2cm/sec, what would the original length have to be if the *area* of the square is increasing at a rate of 12cm²/sec?

Questions From Homework

(Given:

$$\frac{dc}{dt} = ?$$

$$A = 1256 \, \text{cm}^3$$

10 Find 1.

$$A = 4\pi r^{\delta}$$

A = 411c3

$$\frac{dA}{dt} = 8\pi c dc$$

@ Guen,

$$\frac{dA}{dt} = ?$$

$$\frac{dA}{dt} = 8000 \text{ cm}/c = 2513.37$$

Related Rates (Lampposts and Ladders)

A ladder 9m long is set against a wall and begins to slide down. The top of the ladder slides down at a rate of 0.5m/s. How quickly is the bottom sliding away from the wall when it is 4m from the wall to begin with?

(Hint: draw a diagram)

$$x^3 + y^3 = z^3$$
 constant

$$3(4)\frac{dx}{dt} + 3(8.06)(-0.5) = 0$$

$$8\frac{dx}{dt} = 8.06$$

$$\frac{dc}{dt} = 1.0075 \, \text{m/s}$$

(1) Find y'.

$$y = 2 - x^{3}$$
 $y = 81 - 16$
 $y = 65$
 $y = 65$
 $y = 65$
 $y = 66$
 $y = 66$

Without calculator

$$8dx = \sqrt{65}$$

$$\frac{dx}{dt} = \frac{165}{8} \text{ m/s}$$

Bigfoot is 3m tall and walks curiously towards a lamppost that is 7m tall. If he walks at a rate of 2m/s, at what rate is the length of his shadow changing?

draw a diagram

Let x = distance between Bigfoot and lamppost

use similar trangles

A man is 1.8m tall and walks away from a 6m lamppost at a rate of 2m/s. How fast is his shadow changing when he is 5m from the post?

draw a diagram

Let x =distance between man and lamppost

Let y =length of shadow

$$\frac{6}{7}$$
 m/s = $\frac{dq}{d4}$

Homework

