Unit 1: Kinematics

Mechanics

Dynamics

The study of how objects move.

Motion

- Motion: Change in position.
- •Frame of reference: Something not moving with respect to an observer that can be used to detect motion.

Scalars

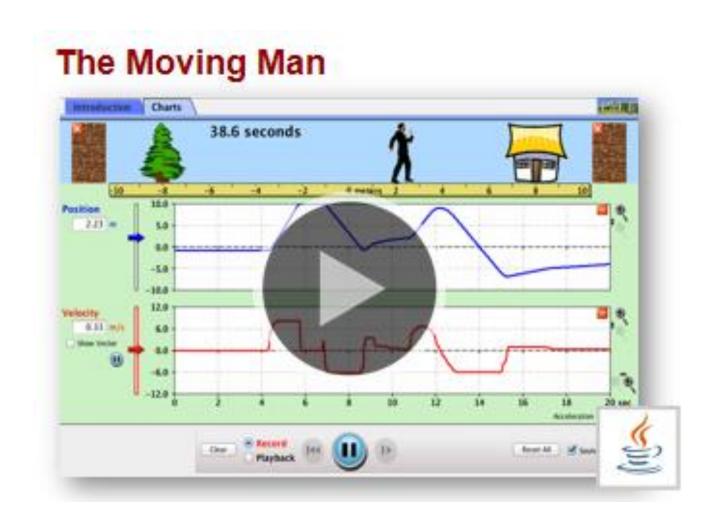
- •Scalars are measurements that are independent of direction.
 - Time
 - Mass
 - Distance
 - Speed

Vectors

- **Vectors** are measurements that require a direction (it is relative to a coordinate system within a frame of reference). Variables that are vectors are symbolized in bold or with an arrow above them. For example, \vec{F} and \vec{a} .
- Position
- Displacement
- Velocity
- Acceleration
- Force

Distance

Length of the route between two points.


DIRECTION

- Described in relative terms: up, down, left, right, forward, etc.
- Cardinal directions: east, west, north and south.
- For calculations it can be positive or negative.

POSITION & DISPLACEMENT

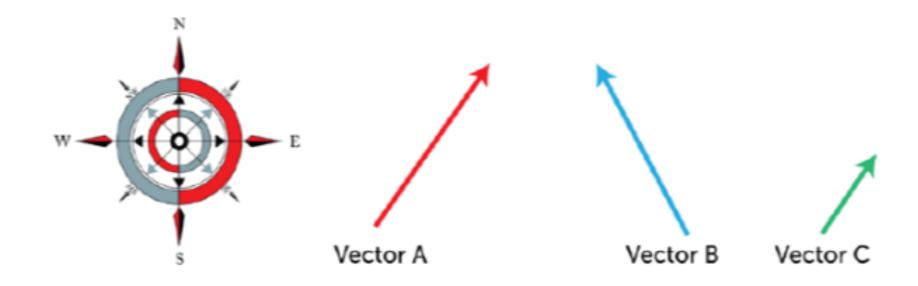
- Position: Distance and direction from a reference point at a given time.
- Displacement: Change in position.

The moving man

You try:

- Calculate this person's distance traveled and final position.
 - 5 m [N]
 - 15 m [N]
 - 40 m [S]
 - 10 m [N]
 - 25 m [S]

Speed


- Scalar (no direction)
- Average Speed: Total distance traveled per unit time.

•
$$v_{sp} = \frac{distance}{time}$$

- The path taken matters. This is what we feel.
- Instantaneous Speed: Speed at an instant in time (speedometer of a car).

Velocity

- Vector
- Speed with direction.

Average velocity

•
$$\vec{v}_{avg}=rac{change\ in\ position}{time}=rac{ec{d}}{t}$$
, where $ec{d}=ec{d}_f-ec{d}_o$

- The answer to such a problem communicates how fast and in what direction to travel to reach a destination in a specific amount of time.
- If an object changes its speed or direction, the velocity changes.

Average velocity

- •The average velocity of an object averages out changes in direction. The path taken does not matter.
- •Allows for the analysis of an object's position at a certain time; or the object's change in position during a time interval.
- Can be zero.

Instantaneous velocity

- •The speed and direction of an object at in instant in time.
- The speedometer of a car AND the direction it is traveling at a moment in time.

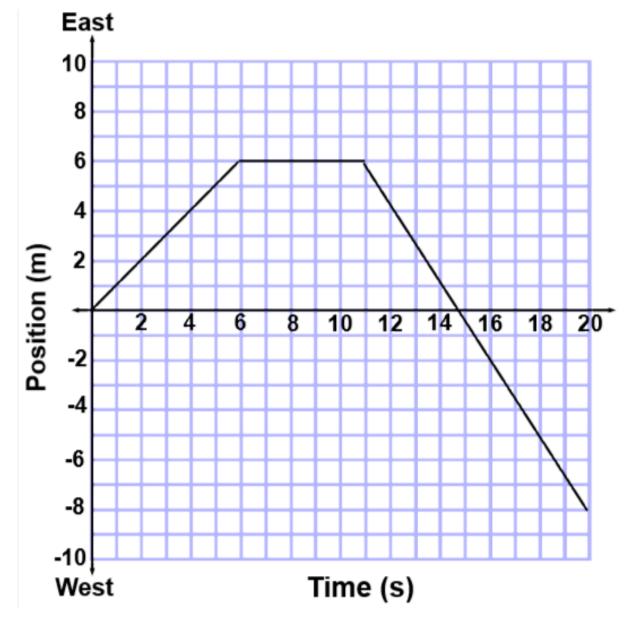
Example Problem #1

- A person drives the following in 3.5 hours:
 - 25 km [E]
 - 40 km [W]
 - 30 km [W]
 - 60 km [E]
- 1. Calculate the total distance traveled.
- 2. Calculate the final position.
- 3. Calculate the average speed.
- 4. Calculate the average velocity.

Position & Velocity problems

- 1. Fred averages 92 km/h [E] and drives for 4.1 hours. a) Calculate the final position in that time.
 - b) Calculate the length of time necessary for Fred to drive 1375km assuming no change in average velocity.

Graphical analysis of position & time



- Review Frame of reference and coordinate system.
- Analyze how position can change with time.
- Learn how to find key points on the graph.
- Develop knowledge about how the graph relates to speed and velocity.

Position-Time Graphs: Key Concepts

- Position: Read from the graph.
- Distance: Sum up all the motions.
- Average Speed: Distance/Time
- Instantaneous Speed: Slope of the line at that time; positive value only.
- Average Velocity: Position/Time
- Instantaneous Velocity: Slope of the line at that time; positive or negative.

Analyzing position-time graphs

- What was the object's position at the 4, 10 and 18 s marks?
- Calculate the distance traveled during the first 14 seconds.
- Calculate the average speed during the first 14 seconds.
- Calculate the average velocity during the first 14 seconds.
- Calculate the instantaneous velocity at the 16 s mark.
- Calculate the object's total distance traveled and final position.
- Calculate the object's average speed and velocity for the full 20s.