Introduction to Chemistry

What is chemistry?

•Chemistry is the study of the composition of "matter" – (matter is anything with mass and occupies space), its composition, properties, and the changes it undergoes.

•Chemistry is the study of the <u>composition</u>, <u>structure</u>, and <u>properties</u> of matter and the <u>changes</u> it undergoes – such as burning fuels.

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O + Energy$$
Reactants \rightarrow Products

5 Major Areas of Chemistry

- 1) Analytical Chemistry- concerned with the composition of substances.
- 2) Inorganic Chemistry- primarily deals with substances without carbon
- Organic Chemistry- essentially all substances containing carbon
- 4) **Biochemistry** Chemistry of living things
- 5) Physical Chemistry- describes the behavior of chemicals (ex. stretching); involves lots of math!

What is Chemistry?

- Pure chemistry- gathers knowledge for the sake of knowledge
- Applied Chemistry- is using chemistry to attain certain goals, in fields like medicine, agriculture, and manufacturing leads to an application
 - * Aspirin (C₉H₈O₄) to relieve pain

Unit 1: From Structures to properties

Learning Target Guide

CMLT1: Define and classify matter according to its composition, distinguish between chemical and physical properties.

Be able to define, explain, identify or provide examples of the following:

- matter
- chemical property/change

- physical property/change
- intrinsic property

extrinsic property

Textbook:

Page 42 #s 1 – 8

• Pages 58 - 60 #s 35 - 43, 57 - 64

Properties of matter

- Matter is anything that: a) has mass, and b) takes up space
- •Mass = a measure of the amount of "stuff" (or material) the object contains (don't confuse this with weight, a measure of the force of gravity)
- Volume = a measure of the space occupied by the object

Describing Matter

- Properties used to describe matter can be classified as:
 - 1) Extensive depends on the *amount* of matter in the sample
 - Mass, volume, calories are examples
 - 2) <u>Intensive</u> depends on the *type* of matter, not the amount present
 - Hardness, Density, Boiling Point

Properties are...

- Physical Properties- a property that can be observed and measured without changing the material's composition.
- Examples- color, hardness, m.p., b.p.
- Chemical Properties- a property that can only be observed by changing the composition of the material.
- Examples- ability to burn, decompose, ferment, react with, etc.

3 (of 4) States of matter

- 1) Solid-matter that can not flow (definite shape) and has definite volume.
- 2) <u>Liquid</u>- definite volume but takes the shape of its container (flows).
- 3) Gas- a substance without definite volume or shape and can flow.
 - <u>Vapor</u>- a substance that is currently a gas, but normally is a liquid or solid at room temperature.
 (Which is correct: "water gas", or "water vapor"?)

States of Matter – Simulation

States of Matter

4th state: Plasma - formed at high temperatures; ionized phase of matter as found in the sun

Physical vs. Chemical Change

- Physical change will change the visible appearance, without changing the composition of the material.
 - Boil, melt, cut, bend, split, crack
- Can be reversible, or irreversible
- <u>Chemical change</u> a change where a new form of matter is formed.
 - •Rust, burn, decompose, ferment

CMLT1

Define and classify matter according to its composition, distinguish between chemical and physical properties.

Test Review Questions

- Page 42 #s 1 8.
- Page 58 60 #s 35 43, 57 64.

Learning Target Guide

CMLT2: Define and classify matter as elements, compounds, heterogeneous mixtures and solutions. Use the periodic law to identify and distinguish metals and non-metals, periods and groups, representative and transition elements, and families.

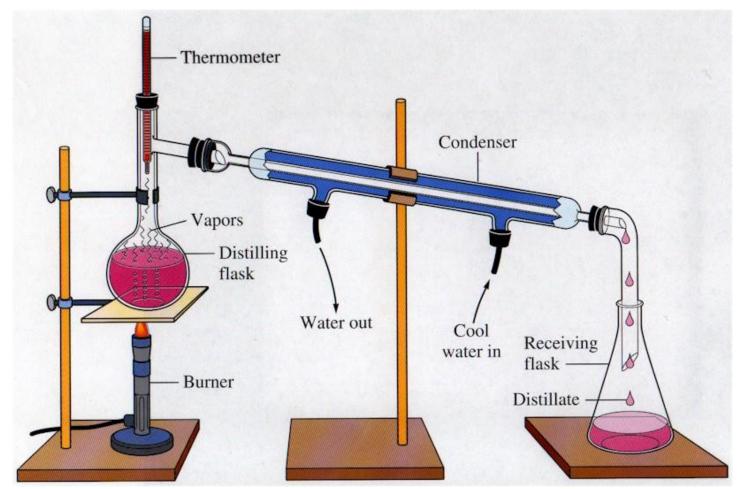
Be able to define, explain, identify or provide examples of the following:

- elements
- compounds
- heterogeneous mixture
- homogenous mixture
- periodic law
- Textbook:
 - Page 47 #s 11 17
 - Page 52 #s 20 27
 - Page 58 #s 44 52
 - Page 160 #s 1 7
 - Page 181 #s 24, 26 31

- metals/non-metals
- periods/groups
- representative/transition elements
- families of elements

Ch. 2.2: Mixtures

- Mixtures are a physical blend of at least two substances; have variable composition. They can be either:
- 1) <u>Heterogeneous</u> the mixture is not uniform in composition
 - Chocolate chip cookie, gravel, soil.
- 2) <u>Homogeneous</u> same composition throughout; called "solutions"
 - Kool-aid, air, salt water
- Every part keeps it's own properties.


Solutions are homogeneous mixtures

- Mixed molecule by molecule, thus too small to see the different parts.
- Can occur between any state of matter: gas in gas; liquid in gas; gas in liquid; solid in liquid; solid in solid (alloys), etc.
- Thus, based on the distribution of their components, mixtures are called <u>homogeneous</u> or <u>heterogeneous</u>.

Separating Mixtures

- Some can be separated easily by physical means: rocks and marbles, iron filings and sulfur (use magnet)
- Differences in physical properties can be used to separate mixtures.
- <u>Filtration</u> separates a solid from the liquid in a heterogeneous mixture (by size) – Figure 2.7, page 46

Separation of a Mixture

Review Questions

• Page 47 #s 11 − 17.

Ch. 2.3 Elements and Compounds

Substances are either:

- a) elements, or
- b) compounds

Substances: element or compound

- **Elements** simplest kind of matter
 - cannot be broken down any simpler and still have properties of that element!
 - all one kind of atom.
- Compounds are substances that can be broken down only by chemical methods
 - when broken down, the pieces have completely different properties than the original compound.
 - made of <u>two or more</u> atoms, chemically combined (not just a physical blend!)

Compound vs. Mixture

Compound	Mixture
Made of one kind of material	Made of more than one kind of material
Made by a chemical change	Made by a physical change
Definite composition	Variable composition

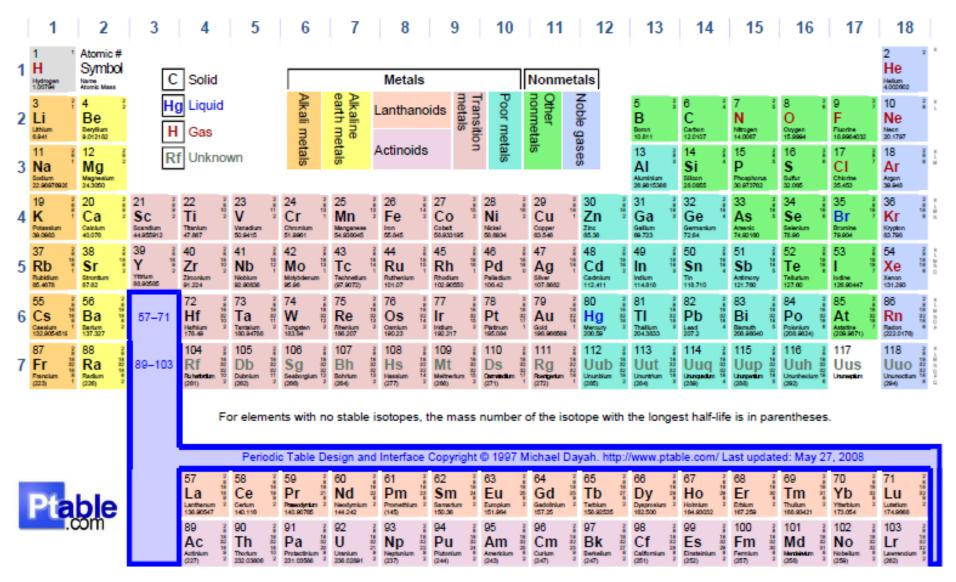
Review Questions

• Page 52 #s 20 − 27.

Organizing Elements: The Periodic Table

The Periodic Table: Crash Course Chemistry

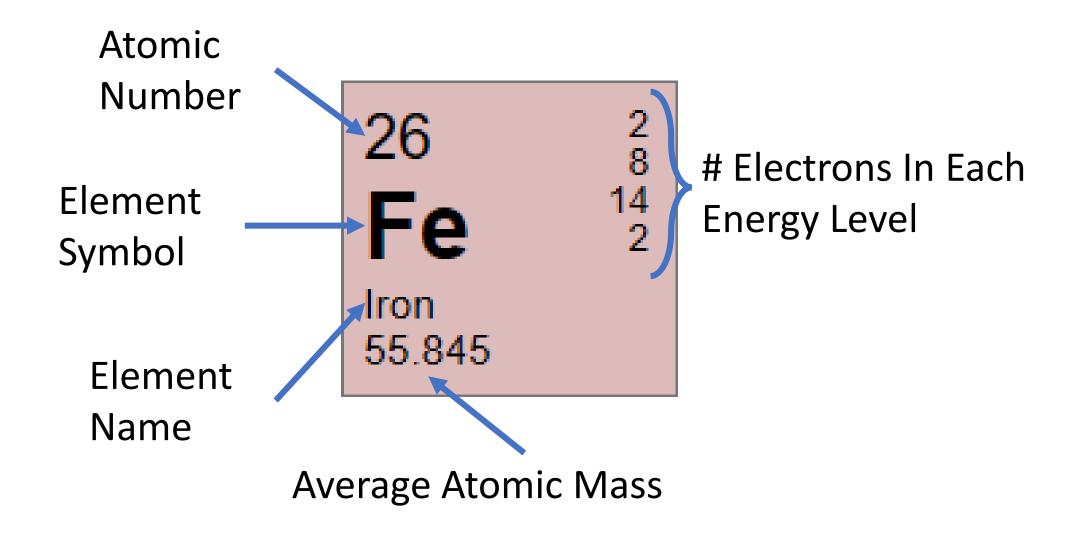
CrashCourse


Organizing the Elements

- A few elements, such as gold and copper, have been known for *thousands of years* since ancient times.
- Yet, only about 13 had been identified by the year 1700.
- As more were discovered, chemists realized they needed a way to <u>organize</u> the elements.

Mendeleev's Periodic Table

- By the mid-1800s, about 70 elements were known to exist
- Dmitri <u>Mendeleev</u> a Russian chemist and teacher
- Arranged elements in order of increasing <u>atomic</u> <u>mass</u>
- Thus, the first "Periodic Table" (page 156)


The Periodic Table of the Elements

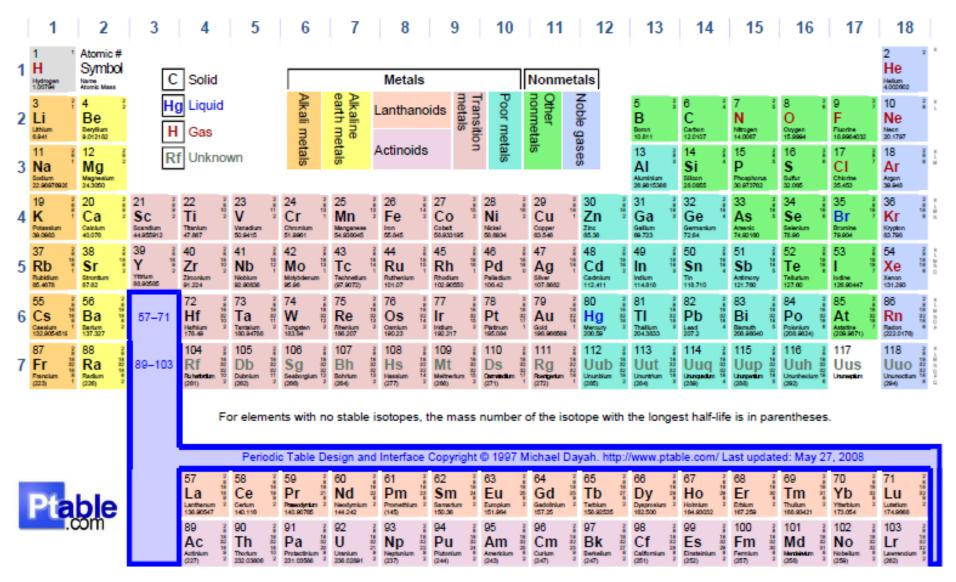
Periodic Table

- Currently, there are 118 elements
- Elements have a 1 or two letter <u>symbol</u>, and compounds have a formula.
- An element's first letter always capitalized; if there is a second letter, it is written lowercase: B, Ba, C, Ca, H, He

Our Periodic Table

Periodic Table: Element Information

- Element Symbol: First letter is always a capital letter. If there is a second letter it is lower case. Two letters maximum.
- <u>Atomic Number</u>: The number of *protons* in the nucleus; how the table is organized. The number of protons defines the element.


Periodic Table: Element Information

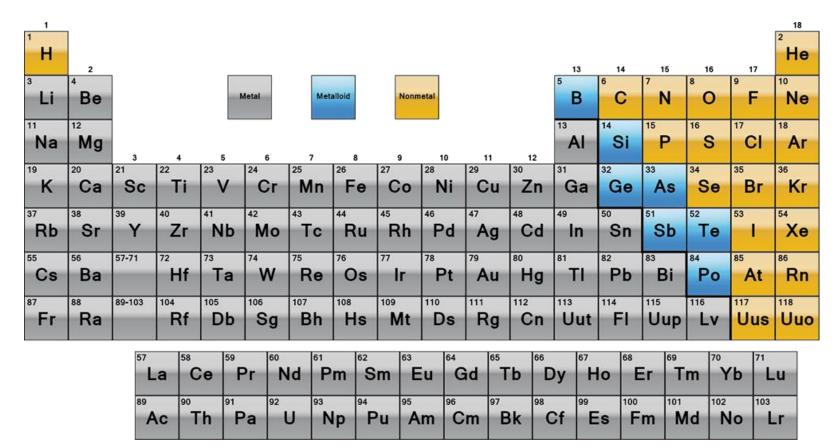
- Average Atomic Mass: The mass of the element taking into account its various *isotopes* (atoms of the same element but a different number of neutrons). The unit is the *atomic mass unit*, *amu*.
- 1 amu is defined as exactly one-12th (1/12) the mass of the Carbon-12 atom (6 protons and 6 neutrons).
- Rounded Atomic Mass Atomic Number ≈ # of Neutrons

The Periodic Law

- When elements are tabled in order of increasing atomic number, there is a periodic repetition of chemical and physical properties.
- **Groups**: The vertical columns; elements in the same column have similar chemical and physical properties (boiling points, luster, conductivity, reactivity, etc.).
- <u>Periods</u>: The horizontal rows. As you read left to right, elements get properties of non-metals.

The Periodic Table of the Elements

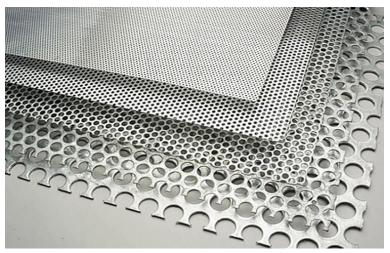
Using the Periodic Table


- What element is atomic number 74?
- What is the symbol for the element with atomic number 82?
- What is the atomic mass of cesium (located in group 1)?
- How many electrons in the 3rd energy level of cadmium?
- What element has the most electrons in group 2?
- What element is located in period 4 group 11?
- How many protons in an atom of carbon?
- How many electrons in the highest energy level of group 1? 17? 18?

Electron Configurations in Groups

- Elements can be sorted into 4 different groupings based on their electron configurations:
 - 1) Noble gases
 - 2) Representative elements
 - 3) Transition metals
 - 4) Inner transition metals

Metals, Nonmetals & Metalloids


- The periodic table classifies/divides elements into one of three groups: **metals**, **non-metals** and **metalloids**.
- Scanning across the periodic table (from left-to-right), the properties of elements becomes less metallic and more nonmetallic.

Physical Properties of Metals

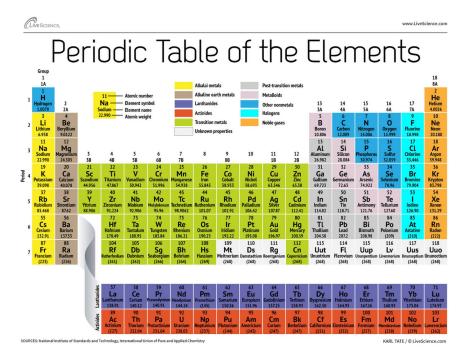
- Most elements are metals.
- Good conductors of heat and electricity.
- High luster and sheen; shiny.
- Malleable hammered into thin sheets.
- Ductile drawn into wires.
- Solids at room temperature (except for mercury).

Physical Properties of Nonmetals

- State at room temperature varies as many are gases but some are liquids and a few are solids.
- Properties opposite of metals.

 Not good conductors of electricity and heat (carbon is an exception to this)

- Not shiny, so they are dull.
- Not malleable.
- Not ductile.

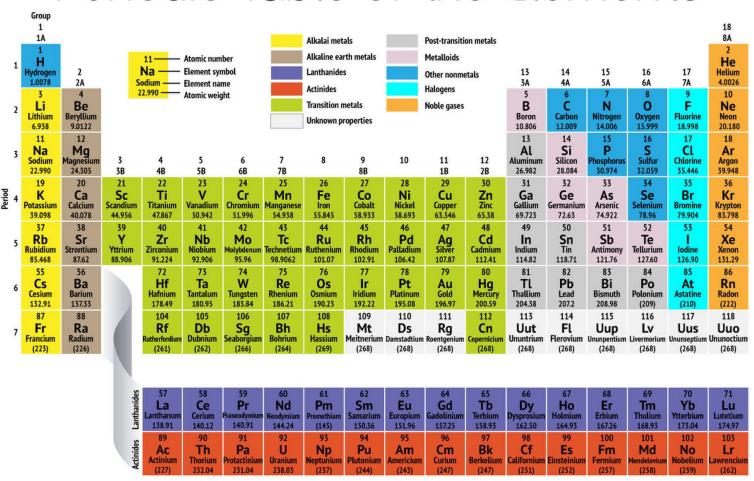


Physical Properties of Metalloids

- There is a heavy staircase, bolded line that separates metals and nonmetals.
- The metals that border the line are the metalloids.
- Metalloids tend to have some properties of metals an nonmetals; this depends on the conditions the eleme under.
- For example, silicon is a poor conductor of electric cubut mix in a small amount of boron and the mixture is a good conductor of electricity (used in electronics).

Groups on the Periodic Table

 Many groups on the periodic table are given a unique name, based on the properties of the elements in that group.



Periodic Table: Group Names

www.LiveScience.com

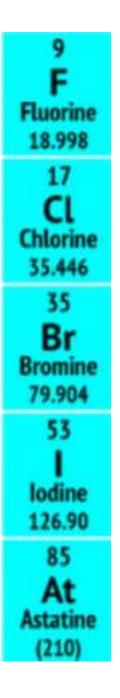
Periodic Table of the Elements

Group 1: Alkali Metals

- All shiny, soft, and silvery metals.
- Very violently reactive with water, releasing H gas which also burns!
- Forms basic compounds with water (baking soda, soaps are bases)
- Form compounds that are mostly white solids and those compounds are very soluble in water (table salt – NaCl).
- Francium is so large an atom it has weakest hold on its valence e⁻, so its very reactive.

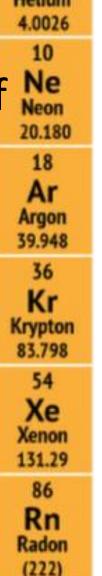
- Also shiny, soft, silvery metals.
- Reactive with water.
- Forms solids, most of which won't dissolve in water.

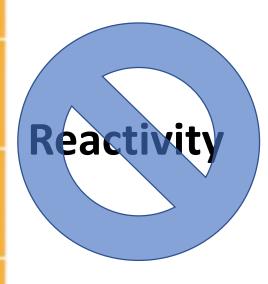
(226)


Groups 3 - 12: Transition Metals

Sc Scandium 44.956	Z2 Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe Iron 55.845	Co Cobalt 58.933	28 Ni Nickel 58.693	Cu Copper 63.546	30 Zn Zinc 65.38
39 Y Yttrium 88.906	40 Zr Zirconium 91.224	Nb Niobium 92.906	42 Mo Molybdenum 95.96	43 Tc Technetium 98.9062	Ru Ruthenium 101.07	Rh Rhodium 102.91	46 Pd Palladium 106.42	Ag Silver 107.87	48 Cd Cadmium 112.41
	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	Hg Mercury 200.59
	104 Rf Rutherfordium (261)	Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	HS Hassium (269)	109 Mt Meitnerium (268)	DS Damstadtium (268)	111 Rg Roentgenium (268)	112 Cn Copernicium (268)

- Contains many of our common, every day metals like iron, copper, tungsten, platinum, gold, silver, mercury, etc.
- The elements generally *transition* towards having properties less metallic.


Group 17: The Halogens


- Nonmetallic elements.
- Poisonous
- React easily with group 1, alkali metals, forming "salts".
 - Which is what the word "halogen" comes from meaning salt forming.

Group 18: The Noble Gases

- They are all inert, or non-reactive.
- Their atoms contain just the right amount of electrons so they do not want to lose, gain or share them.
 - Chemical reactions happen by atoms gaining, losing, or sharing electrons.
 - The have 8 valence electrons (in the highest energy level). Which is the goal of all atoms in chemical reactions.

CMLT2

Define and classify matter as elements, compounds, heterogeneous mixtures and solutions. Use the periodic law to identify and distinguish metals and non-metals, periods and groups, representative and transition elements, and families.

Textbook:

- Page 47 #s 11 17
- Page 52 #s 20 27
- Page 58 #s 44 52
- Page 160 #s 1 − 7
- Page 181 #s 24, 26 31