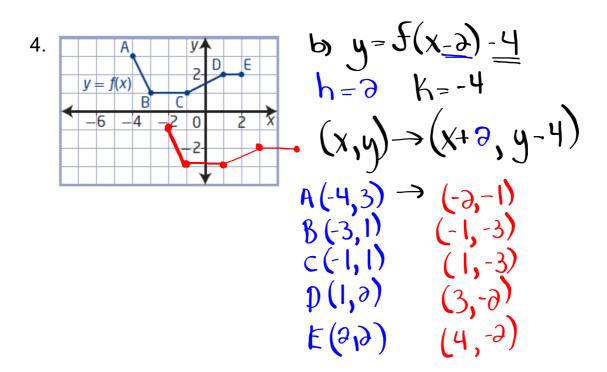
Warm-Up
$$f(x-h)+k$$
8. Copy and complete the table. $y = f(x-h)+k$

[]	1	5	vertical
Translation	Transformed Function	Transformation of Points	vertical
vertical	$y = f(x) + \underline{5}$	$(x, y) \rightarrow (x, y + 5)$	K=5 (Up)
horizonta	y = f(x + 7)	$(x, y) \rightarrow (x - 7, y)$	h=-7 (Left)
horizontal	y = f(x - 3)	$(x,y) \rightarrow (x+3,y)$	h= 3 (Right)
vertical	y = f(x) - 6	$(x,y) \rightarrow (x,y-6)$	K=-6 (Down)
horizontal and vertical	$y = \sqrt{3}(x + \sqrt{2}) - 9$ y + 9 = f(x + 4)	$(x,y) \rightarrow (x-4,y-9)$	h=-4 K=-9 Left Down
and vertical	y=1(x-4)-6	$(x, y) \rightarrow (x \pm 4, y \pm 6)$	h=4 K=-6 Right Dwn
h + v	y = f(x+3) + 3	$(x, y) \rightarrow (x = 2, y + 3)$	h = -3 $h = 3$
horizontal and vertical	y = f(x - h) + k	(x,y) -> (x+h,y+	

Questions from Homework



Transformations:

New Functions From Old Functions

Translations h or K

Stretches

b<0 (b is negative) Reflections a <0 (a is negative)
horizontal reflection vertical reflection in the y-axis

$$(x,y) \rightarrow (-x,y)$$

in the x-axis

$$(x,y) \rightarrow (x,-y)$$

Reflections and Stretches

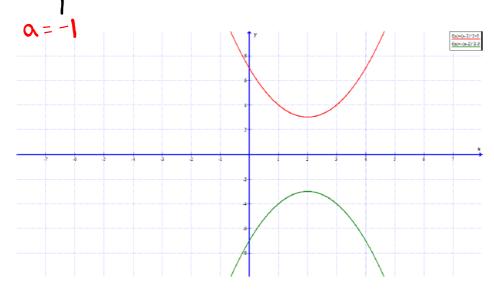
Focus on...

- developing an understanding of the effects of reflections on the graphs of functions and their related equations
- developing an understanding of the effects of vertical and horizontal stretches on the graphs of functions and their related equations

A **reflection** of a graph creates a mirror image in a line called the line of reflection. Reflections, like translations, do not change the shape of the graph. However, unlike translations, reflections may change the orientation of the graph.

Vertical reflection $(x,y) \rightarrow (x,-y)$

• When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the <u>x-axis</u>.



Reflect in x-axis:

$$f(x) = x^3 - 6x + 3$$

New Equation.

$$f(x) = -(x^3 - 6x + 3)$$

$$f(x) = -x^3 + 6x - 3$$

$$f(i) = (1)^3 - 6(1) + 3$$

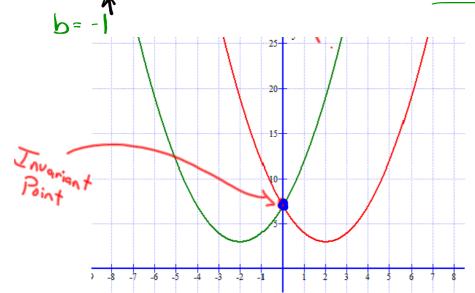
 $f(i) = -3$
(1,-3)
Multiply the output
by regative 1

$$f(1) = 9$$

$$f(1) = -(1)^{9} + 6(1) - 3$$

Horizontal Reflection $(x,y) \rightarrow (-x,y)$ • When the input of a function y = f(x) is multiplied by -1, the result,

y = f(-x), is a reflection of the graph in the y-axis.



invariant point

- · a point on a graph that remains unchanged after a transformation is applied to it
- any point on a curve that lies on the line of reflection is an invariant point

Reflect in y-axis.

$$f(x) = x^3 - 6x + 3$$

New Equation.

$$5(-x) = (-x)^3 - 6(-x) + 3$$

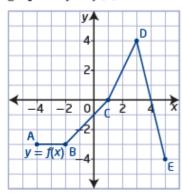
$$f(i) = (1)^{3} - 6(1) + 3$$

 $f(i) = -3$
(1,-3)
Multiply the input
by negative 1

$$f(-1) = (-1)^{3} + 6(-1) + 3$$

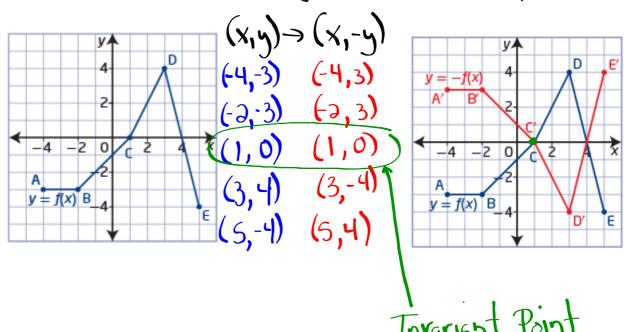
 $f(-1) = -3$

- a) Given the graph of y = f(x), graph the functions y = -f(x) and y = f(-x).
- **b)** How are the graphs of y = -f(x) and y = f(-x) related to the graph of y = f(x)?



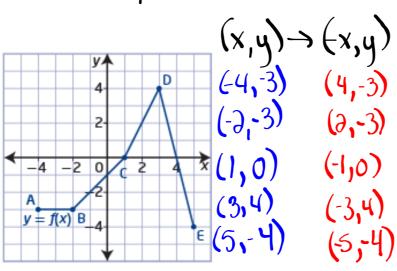
Remember...

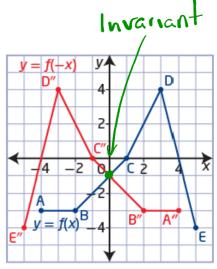
- When the output of a function y = f(x) is multiplied by -1, the result, y = -f(x), is a reflection of the graph in the <u>x-axis</u>.
- Sketch y = -f(x) on the axis below (Vertical Reflection)



Remember...

- When the input of a function y = f(x) is multiplied by -1, the result, y = f(-x), is a reflection of the graph in the <u>y-axis</u>.
- Sketch y = f(-x) on the axis below Harizantal reflection



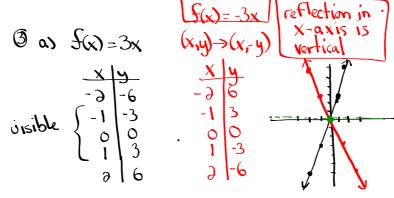


Homework

*
$$f(-4) = \lambda(-4) + 1$$
= -8+1 Page 28 #1, 3, 4

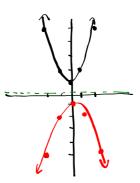
Vertical

 $f(x) = \lambda(-1) + 1$
 $f(x) = \lambda(-1)$
 $f(x$



D'{X|XER} R'{Y|YER}

D:{x|xer} R:{y|yer}



D: {x|Xer} B: {y|yz|,yer}

D'. {x | xer} R: {y | y \(\) , yer}

stretch

- a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor
- scale factors between 0 and 1 result in the point moving closer to the line of reflection; scale factors greater than 1 result in the point moving farther away from the line of reflection

Vertical and Horizontal Stretches

A **stretch**, unlike a translation or a reflection, changes the shape of the graph. However, like translations, stretches do not change the orientation of the graph.

- When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.
- When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Vertical Stretch or Compression...

• When the output of a function y = f(x) is multiplied by a non-zero constant a, the result, y = af(x) or $\frac{y}{a} = f(x)$, is a vertical stretch of the graph about the x-axis by a factor of |a|. If a < 0, then the graph is also reflected in the x-axis.

Example 2

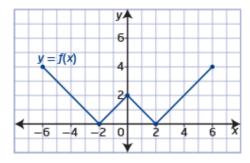
Graph y = af(x)

Given the graph of y = f(x),

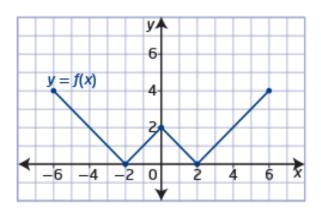
- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

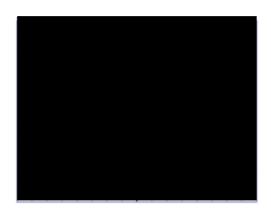
a)
$$g(x) = 2f(x)$$

b)
$$g(x) = \frac{1}{2}f(x)$$



a)
$$g(x) = 2f(x)$$





The invariant points are

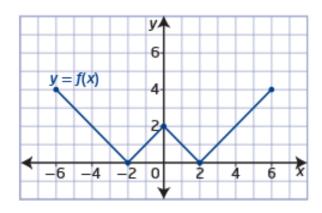
and

For f(x), the domain is

and the range is

For g(x), the domain is and the range is

b)
$$g(x) = \frac{1}{2}f(x)$$



The invariant points are

and

For f(x), the domain is

and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

Example 3

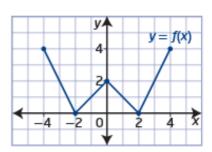
Graph y = f(bx)

Given the graph of y = f(x),

- transform the graph of f(x) to sketch the graph of g(x)
- describe the transformation
- · state any invariant points
- state the domain and range of the functions

a)
$$g(x) = f(2x)$$

$$b) \ g(x) = f\left(\frac{1}{2}x\right)$$



a)
$$g(x) = f(2x)$$



The invariant point is

For f(x), the domain is

or and the range is

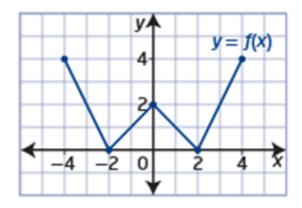
or

For g(x), the domain is

or ind the range is

or

b)
$$g(x) = f(\frac{1}{2}x)$$

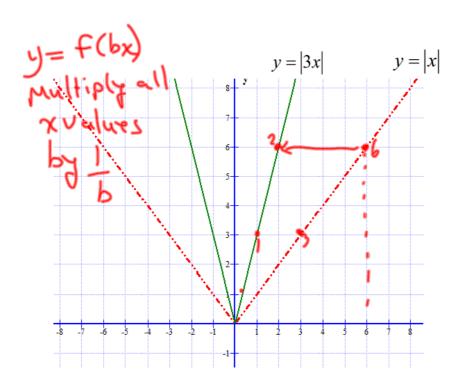


The invariant point is

For f(x), the domain is and the range is

For g(x), the domain is and the range is

Horizontal Stretch or Compression...



Horizontal Stretch or Compression...

• When the input of a function y = f(x) is multiplied by a non-zero constant b, the result, y = f(bx), is a horizontal stretch of the graph about the y-axis by a factor of $\frac{1}{|b|}$. If b < 0, then the graph is also reflected in the y-axis.

$$y = -3f(-2x) + 7$$

Homework

